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THE CONIC OF INTERSECTIONS OF AN AFFINITY

PARIS PAMFILOS

Abstract In this article we study some conics defined, up to dilatation, by an affinity
of the plane. We discuss the mutual relations between the conic and the defining affinity
and, in particular, we show how to reproduce affinities related to a given conic. As an
application of the theory, we show that the orbital conics of equiaffinities are dilatations
of the considered conics.

1 Introduction

“Affinities” or “Affine transformations” and in particular affinities of the plane, we’ll deal
with here, are widely known and have been thoroughly studied ([7], [8, p.97], [4, p.191],
[14]). It seems though, that the following conic 𝜆 (see Figure 1) directly and simply
deriving from an affinity 𝑓 , has not attracted much attention, neither its relations to
the generating it affinity have been discussed. The conic is generated by considering a
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Figure 1: The intersection conic of an affinity

point 𝑂 such that 𝑂′ = 𝑓 (𝑂) ≠ 𝑂 and the lines 𝑂𝑋 through 𝑂. The intersection points
{𝐼 = 𝑂𝑋 ∩ 𝑂′𝑋′} with the corresponding image‑lines 𝑂′𝑋′ = 𝑓 (𝑂𝑋), as 𝑂𝑋 revolves
about 𝑂, generate a conic. The conic apparently depends on the choice of the point 𝑂,
but below (section 6) we show that the conics produced analogously for other choices of
𝑂 are dilatated (in euclidean geometry terms: translated or homothetic) to 𝜆 or to the
conjugate of 𝜆 in the case of hyperbolas. Thus, the affinity defines a certain conic up to
dilatation and eventually conjugacy in the case of hyperbolas. We call this the affinity’s
“conic of intersections”.
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We should notice here the existence of a particular subgroup of affinities, which do not
allow the definition of this conic. This is the subgroup of “dilatations” ([4, p.193]), which,
by definition, map every line to a parallel line having an intersection point 𝐼 = 𝑂𝑋 ∩ 𝑂′𝑋′

at infinity. In our context, these exceptional but simple affinities could be characterized
by having their conic 𝜆 coinciding with the line at infinity. In the sequel we’ll deal with
affinities other than dilatations, that define genuine or, in some cases, degenerated (pro‑
ducts of two lines) conics 𝜆 .

Regarding the organization of the material, in sections 2 and 3 we review in short
the basic facts about affinities, their fixed points and their invariant lines. In sections 4,
5 and 6 we introduce and discuss the basic properties correspondingly of the “associated
ellipse” and the “conic of intersections” of an affinity. In section 7 we discuss the existence
of affinities having a given conic as their conic of intersections. In section 8 we examine
the image 𝜆′ = 𝑓 (𝜆) via the affinity 𝑓 of its conic of intersections 𝜆. In sections 9 and 10
we construct affinities without fixed points having a given intersection conic. Finally in
section 11 we apply the results of the preceding sections to “equi‑affinities”, i.e. affinities
preserving the area of triangles, to show that an “orbital conic” of such an affinity, i.e. the
conic containing a sequence {𝑋, 𝑓 (𝑋), 𝑓 2(𝑋), ...} for some point 𝑋, is a dilatation of its
conic of intersections.

2 Affinities of the plane

Geometrically the affinities can be described as those invertible transformations of the
plane onto itself, which transform lines to lines ([15, vol. II], [16, III, p.18], [1]). Their group
contains as a subgroup the “euclidean isometries”, which preserve the distances of points
|𝑋′𝑌′| = |𝑋𝑌| and the “similarities”, whichmultiply distances by a constant |𝑋′𝑌′| = 𝑘|𝑋𝑌|
([16, vols I, II], [1]). Analytically, fixing a coordinate system of the plane (not necessarily
orthogonal or having equal unit‑lengths on the axes), the affinities are described by an
invertible matrix {𝐴, |𝐴| = 𝑎11𝑎22 − 𝑎12𝑎21 ≠ 0} and a vector 𝑣(𝑣1, 𝑣2) ([4, p.203]):

𝑌 = 𝑓 (𝑋) = 𝐴𝑋 + 𝑣, with 𝐴 = (𝑎11 𝑎12
𝑎21 𝑎22

) ∶

𝑦1 = 𝑎11𝑥1 + 𝑎12𝑥2 + 𝑣1,
𝑦2 = 𝑎21𝑥1 + 𝑎22𝑥2 + 𝑣2.

⎫}
⎬}⎭

(1)

Using the three dimensional extensions 𝑋′ = (𝑥1, 𝑥2, 1) of points 𝑋(𝑥1, 𝑥2) ∈ ℝ2 and the
matrix

𝐴𝑣 = ⎛⎜⎜⎜
⎝

𝑎11 𝑎12 𝑣1
𝑎21 𝑎22 𝑣2
0 0 1

⎞⎟⎟⎟
⎠

= ( 𝐴 𝑣
0 1 ) , (2)

the representation (1) of the affinity is equivalent with

𝑌′ = 𝐴𝑣 ⋅ 𝑋′ ⇔ ⎛⎜⎜⎜
⎝

𝑦1
𝑦2
1

⎞⎟⎟⎟
⎠

= 𝐴𝑣
⎛⎜⎜⎜
⎝

𝑥1
𝑥2
1

⎞⎟⎟⎟
⎠

. (3)

The determinants of 𝐴𝑣 and 𝐴, are equal and the inverse of 𝐴𝑣 is of the same form:

𝐴−1
𝑣 = 1

|𝐴| ⋅ ⎛⎜⎜⎜
⎝

𝑎22 −𝑎12 𝑎12𝑣2 − 𝑎22𝑣1
−𝑎21 𝑎11 𝑎21𝑣1 − 𝑎11𝑣2

0 0 |𝐴|

⎞⎟⎟⎟
⎠

= ( 𝐴−1 −𝐴−1 ⋅ 𝑣
0 1 ) .
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Also, the product (composition) of two such transformations, represented by thematrices
{𝐴𝑣, 𝐵𝑤}, is of the same form:

( 𝐴 𝑣
0 1 ) ⋅ ( 𝐵 𝑤

0 1 ) = ( 𝐴𝐵 𝐴𝑤 + 𝑣
0 1 ) .

Remark 1. From the coordinates (𝑥, 𝑦) we pass to (𝑥, 𝑦, 1) and from there to the corre‑
sponding “projective coordinates” (𝑥, 𝑦, 𝑧), in which {(𝑥, 𝑦, 𝑧), (𝑘𝑥, 𝑘𝑦, 𝑘𝑧), 𝑘 ≠ 0} represent
the same point (𝑥/𝑧, 𝑦/𝑧, 1).

The lines 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 are described in projective coordinates by 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0
and 𝑧 = 0 represents the “line at infinity” containing the far out points {(𝑥, 𝑦, 0)} of the
plane. From equation (1) we see that affinities map a point (𝑥, 𝑦, 0) to a point of the same
kind (𝑥′, 𝑦′, 0) i.e. affinities preserve the line at infinity, consequently, ordinary points of the
plane, characterized by coordinates of the form (𝑥, 𝑦, 1), map by affinities to points of the
same kind (𝑥′, 𝑦′, 1).

This has an important consequence concerning the image of a circle by an affinity.
This is a conic, since quadratic equations transform to quadratic equations by affinities.
This conic though cannot have points at infinity and the images of circles via affinities are
ellipses.

The affine geometry ([4, p.191], [6, p.98]) of the plane deals with properties of shapes
that remain the same (invariant) when the shapes are transformed by affinities. For con‑
venience of reference, next theorem lists the most elementary of these properties, making
subsequently some comments but without entering into their proofs, which can be found
in any one of the aforementioned references.

Theorem 1. The following are valid properties for any affinity 𝑓 of the plane. Two shapes
{𝑆, 𝑆′ = 𝑓 (𝑆)} related by an affinity are said “affine equivalent”.

1. [collinearity property] 𝑓 maps collinear points to collinear and non‑collinear to non‑colli‑
near points.

2. [equivalence of triangles] Any two triangles {𝐴𝐵𝐶, 𝐴′𝐵′𝐶′} are affine equivalent by a
unique affinity mapping {𝐴 ↦ 𝐴′, 𝐵 ↦ 𝐵′, 𝐶 ↦ 𝐶′}. In particular, an affinity fixing the
vertices of a triangle is the identity transformation.

3. [parallels preservation] An affinity maps parallel lines to parallels.
4. [ratio preservation] The signed ratio 𝑘 = 𝐴𝐵/𝐵𝐶 of three points on a line is the same with

that of their image points under an affinity 𝐴′𝐵′/𝐵′𝐶′ = 𝑘. In particular, affinities preserve
the middles of segments.

5. [areas quotient preservation] The quotient of areas 𝑎(𝑆′)/𝑎(𝑆) of a shape 𝑆 and its image
𝑆′ = 𝑓 (𝑆) for a given affinity 𝑓 is the same for all shapes 𝑆.

6. [centroid preservation] Affinities preserve the centroid 𝑋0 = (1/𝑛)(𝑋1 + ⋯ + 𝑋𝑛) of
any finite set of points {𝑋1, … , 𝑋𝑛} of the plane.

7. [equivalence of parallelograms] Any two parallelograms {𝐴𝐵𝐶𝐷, 𝐴′𝐵′𝐶′𝐷′} are affine
equivalent by an affinity mapping {𝐴 ↦ 𝐴′, 𝐵 ↦ 𝐵′, 𝐶 ↦ 𝐶′, 𝐷 ↦ 𝐷′}.

Regarding the analytical point of view of these properties we notice, that given three
points of the plane {𝑋, 𝑌, 𝑍}, the determinant of the corresponding matrix

𝑋𝑌𝑍 = ⎛⎜⎜⎜
⎝

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
1 1 1

⎞⎟⎟⎟
⎠

, |𝑋𝑌𝑍| ∶= (𝑦1𝑧2 − 𝑦2𝑧1) + (𝑧1𝑥2 − 𝑧2𝑥1) + (𝑥1𝑦2 − 𝑥2𝑦1),
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if the coordinate frame is “orthonormal”, expresses twice the signed area of the triangle
𝑋𝑌𝑍 ([13, p.239]). Otherwise, in an oblique coordinate frame, it is a constant multiple of
this area, the constant factor depending on the frame. This implies that the three points are
collinear precisely when this determinant vanishes. Also applying the affinity to {𝑋, 𝑌, 𝑍}
we obtain three other points {𝑈, 𝑉, 𝑊} and we can describe this operation with a matrix
multiplication:

𝑈𝑉𝑉 = 𝐴𝑣 ⋅ 𝑋𝑌𝑍 ⇒ |𝑈𝑉𝑊| = |𝐴𝑣| ⋅ |𝑋𝑌𝑍| = |𝐴| ⋅ |𝑋𝑌𝑍|.

This implies that if {𝑋, 𝑌, 𝑍} are non‑collinear(collinear) the same is true for {𝑈, 𝑉, 𝑊}. In
addition, it follows that the quotient of the areas of two triangles is preserved by affinities.
By splitting a polygon in triangles, we conclude that affinities preserve the quotient of
areas of two polygons. There is even a kind of affinities preserving the area. This, by
the last formula, happens when the determinant of the matrix is |𝐴| = |𝐴𝑣| = 1. These
special affinities are called “equiaffinities” and have attracted much attention in the past
([15, II, p.105], [4, p.203], [3]). In sections 8 and 11 we discuss some properties of these
transformations relating them to the conics under consideration.

The inverse of the matrix 𝑋𝑌𝑍 , for non‑collinear points, is found to be

(𝑋𝑌𝑍)−1 = 1
|𝑋𝑌𝑍|

⎛⎜⎜⎜
⎝

𝑦2 − 𝑧2 𝑧1 − 𝑦1 𝑦1𝑧2 − 𝑦2𝑧1
𝑧2 − 𝑥2 𝑥1 − 𝑧1 𝑥2𝑧1 − 𝑥1𝑧2
𝑥2 − 𝑦2 𝑦1 − 𝑥1 𝑥1𝑦2 − 𝑥2𝑦1

⎞⎟⎟⎟
⎠

.

Thus, given two triples of non‑collinear points {(𝑋, 𝑌, 𝑍), (𝑈, 𝑉, 𝑊)} the matrix equation

𝐵 ⋅ 𝑋𝑌𝑍 = 𝑈𝑉𝑊 ⇔ 𝐵 = 𝑈𝑉𝑊 ⋅ (𝑋𝑌𝑍)−1,

has a unique solution and defines the matrix 𝐵, which, a short calculation shows to be of
the form of equation (2), thus defining an affinity.

Remark 2. The matrix 𝐴 controls the behavior of the points at infinity 𝑋′ = (𝑥, 𝑦, 0)
since the affinity acts on these points by ignoring the vector part: 𝐴𝑣𝑋′ = 𝐴𝑋, where
𝑋 = (𝑥, 𝑦). Characteristically, in the case of a dilatation, 𝐴 must operate on every (𝑥, 𝑦) as
multiplication with a scalar (as an eigenvector), hence it is a scalar multiple of the identity
matrix, and every dilatation can be represented in the form 𝑌 = 𝑘 ⋅ 𝑋 + 𝑣 for a constant
scalar 𝑘.

3 Fixed points, invariant lines

An affinity 𝑓 may possess a center, i.e. an “isolated” point 𝑋(𝑥, 𝑦) such that

𝑋 = 𝑓 (𝑋) = 𝐴𝑋 + 𝑣, with 𝐴 = (𝑎11 𝑎12
𝑎21 𝑎22

)

𝑥1 = 𝑎11𝑥1 + 𝑎12𝑥2 + 𝑣1,
𝑥2 = 𝑎21𝑥1 + 𝑎22𝑥2 + 𝑣2.

⎫}
⎬}⎭

(4)

This is a linear system of equations and it has a unique solution when its determinant is
non zero:

𝐷 = ∣𝑎11 − 1 𝑎12
𝑎21 𝑎22 − 1∣ = |𝐴| − 𝑡𝑟(𝐴) + 1 ≠ 0, (5)
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where |𝐴| is the determinant of 𝐴 and 𝑡𝑟(𝐴) = 𝑎11 + 𝑎22 is its “trace”. If condition (5) is
satisfied, then the solution is

𝑥0 = 1
𝐷(𝑎12𝑣2 + (1 − 𝑎22)𝑣1) , 𝑦0 = 1

𝐷(𝑎21𝑣1 + (1 − 𝑎11)𝑣2) . (6)

The condition 𝐷 = |𝐴| − 𝑡𝑟(𝐴) + 1 = 0 characterizes the lack of fixed points, as in the case
of “translations”, or the existence of a whole line of fixed points of the affinity, as in the
case of “shears”. In fact if this condition holds, which means that 1 is an eigenvalue of
𝐴, then the system (4) either has no solution or has a whole line of points 𝑋 = 𝑋0 + 𝑡𝑤
satisfying it. In the latter case 𝑤 must be an eigenvector to the eigenvalue 1 of 𝐴. This
is immediately seen by applying the transformation:

𝐴𝑋 + 𝑣 = 𝑋 ⇔ 𝐴(𝑋0 + 𝑡𝑤) + 𝑣 = 𝑋0 + 𝑡𝑤
⇔ (𝐴𝑋0 + 𝑣 − 𝑋0) + 𝑡(𝐴𝑤 − 𝑤) = 0 ⇒ 𝐴𝑤 = 𝑤,

since the before to last equation is true for 𝑡 = 0 and 𝑡 = 1.

Corollary 1. If the affinity 𝑓 possesses an “axis” of fixed points, then the matrix 𝐴 has 1 as
eigenvalue and also holds:

|𝐴| − 𝑡𝑟(𝐴) + 1 = 0 . (7)

Corollary 2. The affinity 𝑓 has a unique fixed point, if and only if, 1 is not an eigenvalue of its
matrix.

Remark 3. The “generic” affinity satisfies |𝐴| − 𝑡𝑟(𝐴) + 1 ≠ 0 and consequently has a cen‑
ter. If the affinity 𝑓 has nofixedpoint, then taking anypoint 𝑋 of the planewith 𝑋′ = 𝑓 (𝑋)
and setting 𝑣 = 𝑋 − 𝑋′ the composition 𝑓 ′ = 𝑓 ∘ 𝑇𝑣, where 𝑇𝑣 is the translation by 𝑣, has
𝑋′ as center. Thus, any affinity either has a fixed point or its composition 𝑓 ′ by an ap‑
propriate translation has a fixed point.

An affinity may also possess “invariant lines” i.e. lines which map to themselves. As‑
suming the invariant line 𝜀 parameterized in the form {𝜀(𝑡) = 𝑋0 + 𝑡𝑤} the condition
𝑓 (𝜀) = 𝜀 implies 𝐴(𝑋0 + 𝑡𝑤) + 𝑣 = 𝑋0 + 𝑡′𝑤 for a 𝑡′ depending linearly on 𝑡 ∶ 𝑡′ = 𝛼𝑡 + 𝛽.
This leads to the relation:

𝐴𝑋0 + 𝑣 − (𝑋0 + 𝛽𝑤) = 𝑡(𝛼𝑤 − 𝐴𝑤) .

On the left side all is constant and on the right side we have something variable, depend‑
ing on 𝑡. This implies the two conditions:

𝐴𝑤 = 𝛼𝑤 and 𝐴𝑋0 + 𝑣 = 𝑓 (𝑋0) = (𝑋0 + 𝛽𝑤) ,

showing that the direction 𝑤 of the invariant line is an eigenvector of the matrix 𝐴 cor‑
responding to the eigenvalue 𝛼.

Corollary 3. Any point‑wise non‑fixed but invariant line 𝜀 of an affinity 𝑓 either has a unique
fixed point or 𝑓 acts as a translation on it.

Proof. Using the preceding remarks, a point 𝑋0 + 𝑡𝑤 ∈ 𝜀 fixed by 𝑓 will satisfy

𝐴(𝑋0 + 𝑡𝑤) + 𝑣 = 𝑋0 + 𝑡′𝑤 = 𝑋0 + (𝛼 ⋅ 𝑡 + 𝛽)𝑤 = 𝑋0 + 𝑡𝑤 ⇒

𝑡 = 𝛼 ⋅ 𝑡 + 𝛽 ⇔ 𝑡 = 𝛽
1 − 𝛼, if 𝛼 ≠ 1.

If 𝛼 = 1 we see easily that 𝑓 (𝑋0 + 𝑡𝑤) − (𝑋0 + 𝑡𝑤) = 𝛽 ⋅ 𝑤, showing that 𝑓 acts on 𝜀 as
a translation by the vector 𝛽 ⋅ 𝑤.
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4 The associated ellipse

As we noticed in section 2, the affine image of any circle is an ellipse carrying some infor‑
mation about the affinity, and in some cases reflecting completely its behavior. According
to the following lemma all these ellipses obtained from the various circles of the plane are
related.

Lemma 1. The images of the various circles under the same affinity are pairwise dilatated ellipses.

Proof. The reason for this is illustrated in figure 2 for the case of a homothety. The con‑
jugate ℎ′ = 𝑓 ∘ ℎ ∘ 𝑓 −1 of a homothety ℎ or a translation by an affinity 𝑓 is respectively a
homothety or a translation. In fact, a homothety is represented in cartesian coordinates by
the equation 𝑌 = 𝑘𝑋 + (1 − 𝑘)𝑋0, where 𝑋0 is the center of the homothety and 𝑘 its ratio.
It is then readily seen that 𝑓 ∘ ℎ ∘ 𝑓 −1 is represented by 𝑌 = 𝑘𝑋 + (1 − 𝑘)(𝐴𝑋0 + 𝑣), which
is also a homothety with the same ratio and center at the point 𝑌0 = 𝐴𝑋0 + 𝑣 = 𝑓 (𝑋0).
Analogously is seen that the conjugate 𝑓 ∘ 𝑡𝑣 ∘ 𝑓 −1 of a translation by the vector 𝑣 is the
translation by the vector 𝐴𝑣. Since any two circles are the translate or homothetic by the
ratio 𝑘 = 𝑟/𝑟′ of their radii, the claim is true and the resulting ellipses are homothetic by
the same ratio 𝑘, or in the case of translation, each is a translation of the other.

f

f -1

h

h'

Figure 2: Affine images of circles

Thus, an affinity defines an infinity of pairwise dilatated ellipses and by abstracting to
the proper shape and orientation of such an ellipse we can speak of the “ellipse associated
to an affinity”. We can represent this ellipse by identifying it with the image via 𝑓 of the
unit circle 𝑥2 + 𝑦2 = 1, the coordinates now assumed to be ordinary cartesian referred to
orthogonal vectors of length 1. Assuming the affinity 𝑓 in the form

𝑥′ = 𝑎𝑥 + 𝑏𝑦 + 𝑣1,
𝑦′ = 𝑐𝑥 + 𝑑𝑦 + 𝑣2,

⎫}
⎬}⎭

⇒
𝐷𝑥 = 𝑑𝑥′ + −𝑏𝑦′ + 𝑏𝑣2 − 𝑑𝑣1,
𝐷𝑦 = −𝑐𝑥′ + 𝑎𝑦′ + 𝑐𝑣1 − 𝑎𝑣2,

⎫}
⎬}⎭

, 𝐷 = 𝑎𝑑 − 𝑏𝑐. (8)

A matrix representation of the ellipse is obtained through the product of matrices:

𝑁 = 𝑀𝑡 ⋅ ⎛⎜⎜⎜
⎝

−1 0 0
0 −1 0
0 0 1

⎞⎟⎟⎟
⎠

⋅ 𝑀 with 𝑀 = ⎛⎜⎜⎜
⎝

𝑑 −𝑏 𝑏𝑣2 − 𝑑𝑣1
−𝑐 𝑎 𝑐𝑣1 − 𝑎𝑣2
0 0 𝑎𝑑 − 𝑏𝑐

⎞⎟⎟⎟
⎠

, (9)

𝑀 being the 𝐷−multiple of the inverse of the matrix representing 𝑓 and 𝑀𝑡 denoting
the transposed of 𝑀. Doing the multiplication we find:

𝑁 = ⎛⎜⎜⎜
⎝

𝐴 𝐵 𝐴𝑣1 + 𝐵𝑣2
𝐵 𝐶 −𝐵𝑣1 − 𝐶𝑣2

𝐴𝑣1 + 𝐵𝑣2 −𝐵𝑣1 − 𝐶𝑣2 𝐴𝑣2
1 + 2𝐵𝑣1𝑣2 + 𝐶𝑣2

2 + 𝐷2

⎞⎟⎟⎟
⎠

, (10)
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with {𝐴 = −𝑐2 − 𝑑2 , 𝐵 = 𝑎𝑐 + 𝑏𝑑 , 𝐶 = −𝑎2 − 𝑏2}. The invariants ([11]) of this conic
are

𝐽1 = 𝐴 + 𝐶 , 𝐽2 = 𝐴𝐶 − 𝐵2 = 𝐷2 , 𝐽3 = 𝑑𝑒𝑡(𝑁) = 𝐷4 .

The center of the ellipse is the image (𝑣1, 𝑣2) = 𝑓 (0, 0) and translating there the coordinate
system, the equation of the ellipse obtains the next form, in which the coefficients do not
contain the constants {𝑣1, 𝑣2}:

𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷2 = 0 .

A trivial example of characterization of the affinity by its associated ellipse is the case of
the “similarity”, for which the associated ellipse is actually a circle. It is also not difficult
to see, that if the associated ellipse is a circle, then the affinity is a similarity.

Remark 4. On the occasion of this family of pairwise dilatated ellipseswe say a fewwords
on the more general phenomenon of families of pairwise dilatated conics and the analytic
representation of such families. It is well known ([6, p.112], [12, p. 273]), that fixing a
cartesian system of coordinates and considering the corresponding quadratic equation
𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0 representing a conic, the quadratic coefficients of
two dilatated conics are proportional (𝐴′

𝐴 = 𝐵′

𝐵 = 𝐶′

𝐶 ) . The inverse is not quite true and
we need some additional information on the two conics, if we have such a proportionality
condition. For example, equations 𝑥2 − 𝑦2 = 1 and 𝑥2 − 𝑦2 = 0 or 𝑥2 − 𝑦2 = −1 have
pairwise proportional quadratic coefficients but each is not a dilatation of the other in
the strict sense of the concept. In order to conclude about the dilatation, we need some
additional information: (i) whether the two conics are genuine or degenerate, (ii) in the
case of hyperbolas, brought to their normal form, whether the signs of the constant terms
are the same. If they are not the same, then the equations represent two hyperbolas, each
similar to the conjugate of the other. In the sequel we’ll use the term “dilatated” in this
broader sense, including the similarity to the conjugate of a hyperbola. In figure 3 the two

O

Figure 3: Dilatated conics in a broader sense

hyperbolas pass through the origin of coordinates and are defined by equations having
the same quadratic coefficients and differing only in the linear terms. Their characteristic
is that they have parallel respective asymptotes. Varying the coefficients of the linear
terms we can produce such examples, where each hyperbola is similar to the conjugate
hyperbola of the other.
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5 The conic of intersections of an affinity

Figure 4 shows a circle 𝜅(𝑂) and its image, the ellipse 𝜅′, under the affinity 𝑓 . It also
shows the conic 𝜆 produced by the intersections {𝐼 = 𝑂𝑋 ∩ 𝑂′𝑋′} as 𝑂𝑋 revolves about
the point 𝑂 and its image 𝑂′𝑋′ = 𝑓 (𝑂𝑋) revolves about 𝑂′ = 𝑓 (𝑂) ≠ 𝑂.

Theorem 2. For an affinity 𝑓 different from a dilatation and a point 𝑂 with 𝑂′ = 𝑓 (𝑂) ≠ 𝑂,
the intersections 𝐼 = 𝑂𝑋 ∩ 𝑂′𝑋′ of lines 𝑂𝑋 rotating about the point 𝑂 and their images 𝑂′𝑋′

generate a conic 𝜆 passing through the points {𝑂, 𝑂′}. The conic passes also through the isolated
fixed point 𝐷 of the affinity, if any. The tangent 𝜇 at 𝑂 maps via 𝑓 to line 𝜇′ = 𝑂𝑂′ and this,
in turn, maps to the tangent 𝜇″ at 𝑂′.
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Figure 4: The ellipse 𝜅′ = 𝑓 (𝜅) and the conic 𝜆 of the affinity 𝑓

Proof. In fact, from the “Chasles‑Steiner theorem” ([5, p.77]), lines such as {𝑂𝑋, 𝑂𝑋′} of two
pencils {𝑂∗, 𝑂′∗} corresponding under a homography have an intersection 𝐼 describing a
conic passing through the centers {𝑂, 𝑂′} of the pencils. The statement about 𝐷 is obvious
and the statements about the tangents follow by considering the limiting positions of the
lines {𝑂𝑋, 𝑂′𝑋′}, when 𝐼 tends to coincide with 𝑂 or 𝑂′.

We call 𝜆 the “conic of intersections” of the affinity 𝑓 . Belowwe show that the shape of
this conic is in some sense independent of the choice of the point 𝑂 with 𝑂′ = 𝑓 (𝑂) ≠ 𝑂.
More precisely, the various choices of such points 𝑂 lead to dilatated to 𝜆 conics and
when 𝜆 is a hyperbola to dilatated to 𝜆 or dilatated to its conjugate hyperbola 𝜆∗.

Before to handle this question, we take a look at the degenerate cases i.e. the cases in
which the conic 𝜆 is degenerate, consisting of two different lines, parallel or intersecting,
the case of “double line” being excluded, since in that case the affinitywouldmap thewhole
plane onto that line, which is not allowed. On the ground of figure 4, a key observation
is, that if 𝐼 coincides with a fixed point 𝐷, then, by the preservation of ratios by affinities,
𝑂𝑋/𝑋𝐷 = 𝑂′𝑋′/𝑋′𝐷 and line 𝑋𝑋′ is parallel to 𝑂𝑂′. If the conic 𝜆 contains a second
fixed point 𝐷′ ≠ 𝐷 of 𝑓 , then thewhole line 𝐷𝐷′ consists of fixed points and is contained
in 𝜆, which therefore is degenerate, consisting of the union of the two lines {𝑂𝑂′, 𝐷𝐷′}
and for all 𝑋 the line 𝑋𝑋′ is parallel to 𝑂𝑂′. Thepossible configurations correspond to (i)
𝑂𝑂′ ∩ 𝐷𝐷′ = ∅ and (ii) 𝑂𝑂′ ∩ 𝐷𝐷′ ≠ ∅ (see Figure 5). In both cases joining the arbitrary
point 𝑋 with 𝑂 and defining 𝐷𝑋 = 𝑂𝑋 ∩ 𝐷𝐷′, by the preservation of the ratios, we
obtain 𝑋′ = 𝑓 (𝑋) on the line 𝐷𝑋𝑂′ with 𝑋𝑋′ ∥ 𝑂𝑂′. In coordinates with x‑axis the line
𝐷𝐷′, the transformations are respectively described, each by a corresponding constant
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Figure 5: Affinities with degenerate conic of intersections

𝑘, through the equations:

”shear” :
⎧{
⎨{⎩

𝑥′ = 𝑥 + 𝑘𝑦,
𝑦′ = 𝑦.

⎫}
⎬}⎭

and ”strain” :
⎧{
⎨{⎩

𝑥′ = 𝑥 ,
𝑦′ = 𝑘𝑦 .

⎫}
⎬}⎭

These two kinds of affinities, the “shears” and “strains”, are called “homologies” or “ax‑
ial affinities” ([4, p.203], [14, p.116]). They are characterized as the affinities possessing a
single line of fixed points, their “axis”, the constant 𝑘 being the “ratio” of the homology.
In the case of strains the direction of the lines {𝑂𝑂′} is called “conjugate direction” of the
strain. When 𝑘 = −1, the affinity is called “affine reflection” ([4, p.203]). When the conju‑
gate direction of the affine reflection is orthogonal to its axis we have a usual euclidean
reflection. Obviously, keeping the same affinity 𝑓 and changing the location of point 𝑂
produces an other degenerate conic consisting of the same axis (𝐷𝐷′) of fixed points and
a different line 𝑂1𝑂′

1, parallel to 𝑂𝑂′, so that in any case the resulting conics of intersec‑
tions are, each a dilatation of the other. It is also easy to show the converse, i.e. that any
axial affinity, shear or strain, and any choice of a point 𝑂 with 𝑂′ = 𝑓 (𝑂) ≠ 𝑂 produces
a degenerate conic of one of these two kinds. We formulate these observations in the form
of a theorem.

Theorem 3. Axial affinities produce degenerate conics of intersections and vice versa. These
conics consist of two parallel lines in the case of shears and of two intersecting lines in the case of
strains.

Figure 6 shows the conic of intersections when 𝑓 is a rotation 𝐷(𝜑). It is easily seen,
that in this case 𝜆 coincides with the circle through {𝑂, 𝑂′ = 𝑓 (𝑂), 𝐷}. Below we’ll see
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Figure 6: Rotation: the conic of the affinity is a circle

more general (corollary 4), that conversely, if the conic of intersections 𝜆 of the affinity is
a circle, then the affinity is a “spiral” or “direct similarity” ([16, v.II]).

Remark 5. Notice that points {𝑂, 𝑂′} can be used to define also the conic of intersections
of the inverse affinity 𝑔 = 𝑓 −1. In this case their roles are interchanged and 𝑂 = 𝑔(𝑂′)
but the conics of intersections of 𝑓 and 𝑔 coincide.
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6 Independence from the base point

The conic 𝜆 of theorem 2 is in some sense independent of the selected point 𝑂. Next
theorem discusses this issue assuming that the intersection conics are non‑degenerate,
since the analogous result for degenerate conics has already been handled in section 5.
Also the term “dilatation” is used in the broader sense of remark 4.

Theorem 4. With the conventions adopted so far, let {𝑂, 𝑂1} be two non‑fixed points of the non‑
axial affinity 𝑓 . Let also {𝜆, 𝜆1} be the corresponding non‑degenerate conics of intersections. Then,
𝜆1 is a dilatation of 𝜆.

Proof. Let 𝜆 be generated by the intersections {𝐼 = 𝜈 ∩ 𝜈′} of lines 𝜈 revolving about
𝑂 and their images 𝜈′ = 𝑓 (𝜈) revolving about 𝑂′ = 𝑓 (𝑂). For each position of 𝜈 we
consider its parallel 𝜈1 from 𝑂1 and its image 𝜈′

1 = 𝑓 (𝜈) revolving about 𝑂′
1 = 𝑓 (𝑂1),

the intersections {𝐼1 = 𝜈1 ∩ 𝜈′
1} generating the conic 𝜆1 (see Figure 7).

Consider a cartesian system of coordinates with origin at 𝑂 and a variable unit vector
𝑒(𝑐, 𝑠). The lines 𝜈 through 𝑂 are described by {𝑡𝑒 , 𝑡 ∈ ℝ}. If the affinity is represented
by the matrix 𝐴 and the translation vector 𝑣 by 𝑥′ = 𝐴𝑥 + 𝑣, then the image lines 𝜈′ are
described by {𝐴(𝑡𝑒) + 𝑣 , 𝑡 ∈ ℝ} and their intersections result from the equation

𝑡𝑒 = 𝐴(𝑡′𝑒) + 𝑣 ⇒ 𝐼(𝑒(𝑐, 𝑠)) = 𝑣 ⋅ 𝐽(𝐴𝑒)
𝑒 ⋅ 𝐽(𝐴𝑒) 𝑒 ⇒ (𝑥, 𝑦) = 𝑀𝑐 + 𝑁𝑠

𝑃𝑐2 + 𝑄𝑐𝑠 + 𝑅𝑠2 (𝑐, 𝑠) ,

where 𝐽(𝑥) is the positive rotation by 𝜋/2 and 𝑥 ⋅ 𝑦 represents the standard inner prod‑
uct, the last expression being the expansion in the coordinates (𝑐, 𝑠) . The coefficients
{𝑃, 𝑄, 𝑅, 𝑀, 𝑁} result by expanding the expressions in the fraction w.r.t. {𝑐, 𝑠}. Eliminat‑
ing {𝑐, 𝑠} we find the equation of 𝜆 ∶
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Figure 7: Dilatated conics generated by affinities

𝜆(𝑥, 𝑦) = 𝑃𝑥2 + 𝑄𝑥𝑦 + 𝑅𝑦2 − 𝑀𝑥 − 𝑁𝑦 = 0 .

Analogously, the parallel to 𝜈 lines 𝜈1 through 𝑂1 are {𝑂1 + 𝑡𝑒 , 𝑡 ∈ ℝ} and their images
𝜈′

1 are {𝐴(𝑂1 + 𝑡𝑒) + 𝑣 , 𝑡 ∈ ℝ}. From this results the representation of 𝐼1(𝑒) ∶

𝐼1(𝑒(𝑐, 𝑠)) − 𝑂1 = (𝐴𝑂1 + 𝑣 − 𝑂1) ⋅ 𝐽(𝐴𝑒)
𝑒 ⋅ 𝐽(𝐴𝑒) 𝑒 = 𝑀1𝑐 + 𝑁1𝑠

𝑃𝑐2 + 𝑄𝑐𝑠 + 𝑅𝑠2 (𝑐, 𝑠) .

Disregarding the translation by 𝑂1 and maintening in the following the symbol 𝜆1 for
the translated conic, this leads by elimination of {𝑐, 𝑠} to the equation:

𝜆1(𝑥, 𝑦) = 𝑃𝑥2 + 𝑄𝑥𝑦 + 𝑅𝑦2 − 𝑀1𝑥 − 𝑁1𝑦 = 0 .

The conclusion follows from the well known facts discussed in remark 4.
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7 Affinities with given conic of intersections

A given conic 𝜆 can be considered the conic of intersections of a multitude of affinities.
Here we examine a method to define such affinities, which uses the constructs of the pre‑
ceding section. In this section we assume that the affinity has an isolated fixed point.
The case of affinities without fixed points will be examined in subsequent sections (9, 10).
We start with a given ordered triple of pairwise different points {𝑂, 𝑂′, 𝐷} of the conic,
assumed to satisfy {𝑓 (𝑂) = 𝑂′ , 𝑓 (𝐷) = 𝐷}. The standardmethod of definition of an affin‑
ity 𝑓 proceeds by detecting two triangles {𝐴𝐵𝐶, 𝐴′𝐵′𝐶′} whose vertices are supposed to

correspond under 𝑓 ∶ {𝐴 𝑓↦ 𝐴′, 𝐵 𝑓↦ 𝐵′, 𝐶 𝑓↦ 𝐶′}.
Our method uses an alternative procedure, replacing some of the points with lines.

We’ll proceed to the construction of 𝑓 after a short discussion on this alternative method.
In fact, we can more generally ask, “if giving three elements and their images define an affin‑
ity?”. Here “elements” stands for points or lines. Obviously giving three lines {𝜆, 𝜇, 𝜈} in
general position and their images {𝜆′, 𝜇′, 𝜈′} also in general position, defines completely
an affinity. In fact, considering the intersections of pairs of these lines, this reduces to
the standard case of three points and their images. Next case leads also to a complete
determination.

Theorem 5. Two triples {(𝐴, 𝜇, 𝜈), (𝐴′, 𝜇′, 𝜈′)} of a point and two lines in general position
uniquelly determine an affinity 𝑓 mapping the first to the second.
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Figure 8: Affinity defined by a point and two lines and their images

Proof. Suppose we have succeeded in constructing the affinity 𝑓 . Consider the intersec‑
tions of an arbitrary line through 𝐴 ∶ {𝜉 ∶ 𝐶 = 𝜉 ∩ 𝜇 , 𝐷 = 𝜉 ∩ 𝜈} (see Figure 8) and the
points 𝐵 = 𝜇 ∩ 𝜈, 𝐵′ = 𝜇′ ∩ 𝜈′. Certainly 𝑓 (𝐵) = 𝐵′ and to reduce the construction to
that of three points and their images, it suffices to find the intersections 𝐶′ = 𝜉 ′ ∩ 𝜇′,
𝐷′ = 𝜉 ′ ∩ 𝜈′, where 𝜉 ′ = 𝑓 (𝜉). Since the ratio 𝑘 = 𝐴𝐷/𝐷𝐶 is known, it suffices to find the
line 𝜉 ′ through 𝐴′ which intersects {𝜇′, 𝜈′} at points {𝐶′, 𝐷′} such that 𝐴′𝐷′/𝐷′𝐶′ = 𝑘.
But this is easily achieved by taking an arbitrary point 𝑋 ∈ 𝜈′ and drawing the paral‑
lel 𝜈″ to 𝜈′ such that the variable lines 𝜉𝑡 through 𝐴′ intersect it at points 𝑍 such that
𝐴′𝑋/𝑋𝑍 = 𝑘. The requested point 𝐶′ = 𝜈″ ∩ 𝜇′ and 𝐷′ = 𝜈′ ∩ 𝐴′𝐶′.

Next theorem shows that the situation is radically different if we are given two points
and a line and their images.

Theorem 6. Two triples {(𝐴, 𝐵, 𝜇), (𝐴′, 𝐵′, 𝜇′)} of two points and a line in general position either
fail to determine an affinity mapping the first to the second or they define a double infinity of
affinities 𝑓 doing that transformation.
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Figure 9: Affinities defined by two points {𝐴, 𝐵} and a line 𝜇 and their images

Proof. Suppose we have again succeeded in constructing the affinity 𝑓 (see Figure 9). By
the preservation of ratios by affinities, if {𝐶 = 𝐴𝐵 ∩ 𝜇 , 𝐶′ = 𝐴′𝐵′ ∩ 𝜇′} the ratios must be
equal 𝐴𝐵/𝐵𝐶 = 𝐴′𝐵′/𝐵′𝐶′ = 𝑘. Thus, if this condition is not satisfied by the given data,
there is no affinity mapping the first triple onto the second.

On the other side, if this condition is satisfied, then selecting two arbitrary points
{𝐷 ∈ 𝜇 , 𝐷′ ∈ 𝜇′}, we see easily that the affinity mapping 𝐵𝐶𝐷 onto 𝐵′𝐶′𝐷′ satisfies the
requirements.

We proceed now to the definition of an affinity from a non‑degenerate conic 𝜆 and
three points on it, using the construction of theorem 5.

Theorem 7. Consider an ordered triple of points {𝑂, 𝑂′, 𝐷} on a non degenerate conic 𝜆. There
is a unique affinity 𝑓 mapping 𝑓 (𝑂) = 𝑂′, leaving the point 𝐷 fixed and having the conic 𝜆 as
a conic of intersections.
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Figure 10: Affinity defined by three points on a conic

Proof. We use the additional information (theorem 2) of section 5 resulting directly from
the proper definition of 𝜆 . The two points {𝑂, 𝑂′} define a chord 𝜇′ and two tangents
{𝜇, 𝜇″} at its endpoints (see Figure 10). By theorem 5 there is an affinity 𝑓 mapping the
triple {𝜇, 𝜇′, 𝐷} to {𝜇′, 𝜇″, 𝐷}. It is then easily seen that the given conic 𝜆 is a conic of
intersections of this affinity. In fact, if 𝜆′ is the conic of intersections of 𝑓 , then, by theorem
2, the lines {𝜇, 𝜇′} are tangent to 𝜆′ at {𝑂, 𝑂′} and 𝐷 ∈ 𝜆′. This implies that both {𝜆, 𝜆′}
belong to the “bitangent pencil” of conics ([2, II, p.187], [9]) and pass both through 𝐷, hence
they are identical.

Figure 10 illustrates the construction of two triangles corresponding under the affinity.
Point 𝐴 ∈ 𝜇 can be selected arbitrarily andwe take it to be the intersection 𝐴 = 𝐷𝐽 ∩ 𝑂𝑂′.
Then, by themethod of theorem 5we construct a secant 𝐷𝐵𝐶 such that 𝐷𝐵/𝐵𝐶 = 𝐷𝐴/𝐴𝐽.
The affinity is the one mapping the triangle 𝑂𝐴𝐽 to 𝑂′𝐵𝐶.
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Two triangles {𝑂𝐴𝐽 , 𝑂′𝐵𝐶}, whose vertices correspond under 𝑓 and lie on the lines
{𝜇, 𝜇′, 𝜇″}, like those of theorem7or figure 10, are called “adapted to the conic of intersection”.
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Figure 11: Determination of a conic through parallels

Remark 6. The determination of the affinity producing a given conic as its conic of inter‑
sections allows the description of this conic by a simple procedure which uses paralles to
a fixed direction. Figure 11 illustrates the case. In this, starting with the points {𝑂, 𝑂′, 𝐷}
of the conic and its tangents {𝐽𝑂, 𝐽𝑂′} we constructed the lines {𝜀 = 𝐷𝐽, 𝜀′ = 𝐷𝐵} corre‑
sponding under the affinity and passing through its fixed point 𝐷. Then, drawing from
an arbitrary point 𝑋 ∈ 𝜀 the parallel 𝑋𝑌, 𝑌 ∈ 𝜀′ to 𝐴𝐵 we obtain the line pair (𝑋𝑂, 𝑌𝑂′)
intersecting at a point 𝑍 of the conic.
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Figure 12: Switching from corresponding triangles to two “adapted”

Remark 7. Usually the affinity 𝑓 is defined by two triangles {𝐴𝐵𝐶 , 𝐴′𝐵′𝐶′} supposed
to have vertices corresponding under 𝑓 . In such a case we can switch, if we need, to
two adapted triangles of the kind used in theorem 7. In fact, starting from the triangles
{𝐴𝐵𝐶 , 𝐴′𝐵′𝐶′} the conic of intersections 𝜆 can be easily constructed using correspond‑
ing via 𝑓 lines {𝜈 = 𝐴𝑋, 𝜈′ = 𝐴′𝑋′}. This conic passes through points {𝐴, 𝐴′}, through
the intersection points {𝐵∗ = 𝐴𝐶 ∩ 𝐴′𝐶′ , 𝐶∗ = 𝐴𝐵 ∩ 𝐴′𝐵′} and through the intersection
𝐺∗ = 𝐴𝐺 ∩ 𝐴′𝐺′, where {𝐺, 𝐺′} the centroids of the triangles {𝐴𝐵𝐶, 𝐴′𝐵′𝐶′} (see Figure
12). From our discussion follows that the conic 𝜆 is tangent to the lines 𝜇 = 𝑓 −1(𝜇′)
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and 𝜇″ = 𝑓 (𝜇′), where 𝜇 = 𝐴𝐴′. The adapted triangles {𝐴𝐵1𝐶1 , 𝐴′𝐵′
1𝐶′

1} can be defined
by selecting two points {𝐵1, 𝐶1} respectively on {𝜇, 𝜇′} and taking their images {𝐵′

1, 𝐶′
1}

on {𝜇′, 𝜇″}. We notice that 𝐴𝐵1𝐶1 can be selected to have the same orientation as trian‑
gle 𝐴𝐵𝐶. Then, also the triangles {𝐴′𝐵′𝐶′ , 𝐴′𝐵′

1𝐶′
1} have the same orientation. Thus, the

adapted triangles can be selected so that their orientation coincides with the one imposed
by 𝑓 . In figure 12 we take 𝐶1 = 𝜇′ ∩ 𝐵𝐶 and 𝐵1 is arbitrary on 𝜇 but so that the triangles
{𝐴𝐵𝐶, 𝐴𝐵1𝐶1} have the same orientation.
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Figure 13: Different pairs {(𝑂, 𝑂′)} define different affinities

Remark 8. Different triples (𝑂, 𝑂′, 𝐷) on a given conic 𝜆 produce different affinities hav‑
ing 𝜆 as conic of intersections. This is clear for different fixed points 𝐷 ∈ 𝜆. To see this
for the pairs {(𝑂, 𝑂′)} consider a conic 𝜆 and two different pairs {(𝑂, 𝑂′), (𝑂1, 𝑂′

1)} of
points of 𝜆 (see Figure 13). Suppose the pairs {(𝑂, 𝑂′), (𝑂1, 𝑂′

1)} define the same affinity
𝑓 . Then, point 𝑂′

1 will be the image 𝑂′
1 = 𝑓 (𝑍) of some point 𝑍 ∈ 𝑂𝑂′

1 but, by assump‑
tion, it is also the image of 𝑂1, implying that 𝑂 = 𝑂1. Analogously, considering 𝑓 −1, is
seen that 𝑂′

1 = 𝑂′.

8 The image of the conic of intersections

It is easily seen that the image 𝜆′ = 𝑓 (𝜆) of the conic of intersections of the affinity 𝑓 is
another conic of intersections of 𝑓 . In fact, if 𝜆 is defined by the intersections of the lines
{𝜈, 𝜈′ = 𝑓 (𝜈)} when 𝜈 revolves about the point 𝑂, the conic of intersections 𝜆′ is created
by the intersections of the lines {𝜈′, 𝜈″ = 𝑓 (𝜈′)}, the line 𝜈′ revolving about 𝑂′ = 𝑓 (𝑂)
and the corresponding image‑line 𝜈″ passing through 𝑂″ = 𝑓 (𝑂′) (see Figure 14).

By theorem 4 each one of the conics {𝜆, 𝜆′} is a dilatation of the other or the conjugate
of the other and, since in the generation of the two conics participates the same line 𝜈′

carrying both intersection points {𝐼, 𝐼′} we have the following properties.
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Figure 14: The image 𝜆′ = 𝑓 (𝜆) of a conic of intersections is also a conic of intersections
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Theorem 8. With the notation of this section, and assuming that the conic of intersections 𝜆 of
the affinity 𝑓 is non‑degenerate, the following are valid properties:

1. The lines 𝜈′ = 𝑓 (𝜈) through 𝑂′ intersect the conics {𝜆, 𝜆′} a second time in corresponding
points {𝐼, 𝐼′ = 𝑓 (𝐼)}.

2. The point 𝐷 is a fixed point of 𝑓 , if and only if it belongs to the intersection 𝐷 ∈ 𝜆 ∩ 𝜆′.
3. The tangent of 𝜆′ at 𝑂′ coincides with line 𝜇′ = 𝑂𝑂′.
4. Besides 𝑂′ the conics {𝜆, 𝜆′} may have at most one additional intersection point {𝐷.}
5. Affinities whose conic of intersections is an ellipse, have allways an isolated fixed point co‑

inciding with the other than 𝑂′ intersection point of the conics {𝜆, 𝜆′}.
6. Drawing from {𝑂′, 𝑂″ = 𝑓 (𝑂′)} respectively parallels {𝜉 , 𝜉 ′} to {𝜈, 𝜈′} we obtain a second

description of the conic 𝜆′ through the intersections 𝑃 = 𝜉 ∩ 𝜉 ′.

Proof. Nr‑1 is the comment introducing the theorem.
Nr‑2. Every conic of intersections passes through the fixed point 𝐷. Conversely if

the conics {𝜆, 𝜆′} intersect a second time at a point 𝐷, then the points {𝐼, 𝐼′ = 𝑓 (𝐼)} on the
corresponding line 𝜈′ coincide.

Nr‑3 follows immediately from the fact, that 𝜇′ = 𝑂𝑂′ is the image 𝜇′ = 𝑓 (𝜇) and, by
theorem 2 𝜇 is tangent to 𝜆 at 𝑂.

Nr‑4. If {𝜆, 𝜆′}had two intersection points {𝐷, 𝐷′}, then thewhole line 𝜎 = 𝐷𝐷′ would
consist of fixed points, the affinity would be an axial one and its conic of intersections
would be degenerate, contrary to the hypothesis.

Nr‑5. Assume 𝜆 is an ellipse not intersecting 𝜆′ at an other point 𝐷 ≠ 𝑂′ , then the
two conics must be tangent at 𝑂′ and {𝜇′, 𝜇″} must coincide, hence their pre‑images
{𝜇, 𝜇′} must also coincide. This means that 𝜆 would be tangent to the same line 𝜇′ at
two different points {𝑂, 𝑂′}, which is impossible.

Nr‑6. If 𝜉 is parallel to 𝜈, then, by the preservation of parallels by affinities, 𝜈′ = 𝑓 (𝜈)
is parallel to 𝜈′ = 𝑓 (𝜈) and the intersection point 𝑃 = 𝜉 ∩ 𝜉 ′ is a point of 𝜆′.

The following example, formulated as a corollary, represents a kind of converse to the
circle example of section 6 and the subsequent theorems express some relations between
the affinity and its conic of intersections.
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Figure 15: Direct similarities: the conic of intersections is a circle
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Corollary 4. If the conic 𝜆 of intersections of the affinity 𝑓 is a circle, then the affinity is a spiral
similarity, i.e. a composition of a rotation 𝐷(𝜙) and a homothety with the same center 𝐷.

Proof. We use figure 15, which is a special case of the one used in remark 6. By theorem
8(5), the affinity has a fixed point 𝐷 ∈ 𝜆. The angles 𝐽𝑂𝐴 = 𝐶𝑂′𝐵 and 𝑂′𝑂𝐷 = 𝐵𝑂′𝐷.
The ratios 𝐴𝐷/𝐴𝐽 = 𝐵𝐷/𝐵𝐶 are also equal per construction. This implies that the tri‑
angles {𝐴𝑂𝐷, 𝐵𝑂′𝐷} are similar and the triangles {𝐽𝑂𝐴, 𝐶𝑂′𝐵} are also similar. Thus, 𝑓
coincides at the vertices of the triangle 𝐽𝑂𝐴 with the similarity 𝑓 ′ centered at 𝐷 and
mapping triangle 𝐽𝑂𝐴 to its similar 𝐶𝑂′𝐵. Hence 𝑓 coincides everywhere with 𝑓 ′.
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Figure 16: A point 𝐿 ∈ 𝜆 with 𝐿″ = 𝑓 2(𝐿) ∈ 𝜆

Theorem 9. There is a point 𝐿 on the conic of intersections 𝜆 of the affinity 𝑓 , such that 𝑓 2(𝐿)
belongs also to 𝜆.

Proof. Figure 16 illustrates the case. The prime on a label 𝑋′ means that 𝑋′ = 𝑓 (𝑋). The
conic 𝜆 is generated by the intersections of lines revolving about 𝑂 and their images re‑
volving about 𝑂′. Analogously are defined the conics 𝜆′ = 𝑓 (𝜆) and 𝜆″ = 𝑓 (𝜆) from lines
revolving respectively about 𝑂′ and 𝑂″ and their images. We consider the line 𝜀 = 𝑂𝑂″

intersecting a second time the conic 𝜆′ at 𝐿′. If 𝐿 the second intersection of 𝑂′𝐿′ with
𝜆, we have, according to theorem 8(1), 𝑓 (𝐿) = 𝐿′. For the same reason 𝐿″ = 𝑓 (𝐿′) ∈ 𝑂𝑂″

and since 𝐿′ ∈ 𝑂𝑂″ ⇒ 𝐿″ ∈ 𝑂′𝑂‴ ⇒ 𝐿″ = 𝑂𝑂″ ∩ 𝑂′𝑂‴. By the definition of 𝜆 , since
𝑂′𝑂‴ = 𝑓 (𝑂𝑂″) point 𝐿″ ∈ 𝜆.

Theorem 10. Consider an affinity 𝑓 , a point 𝑂 with 𝑂′ = 𝑓 (𝑂) ≠ 𝑂 and the conic of intersec‑
tions 𝜆 defined by (𝑂, 𝑂′). If these two points are on the same component of 𝜆, then 𝑓 preserves
the orientation and if they are on different components, then 𝑓 reverses the orientation.
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Figure 17: The behavior of orientation under 𝑓
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Proof. Consider first the case of a pair (𝑂, 𝑂′) belonging to the same component and take
an arbitrary point 𝐼 ∈ 𝜆 together with the lines {𝜈 = 𝑂𝐼, 𝜈′ = 𝑂′𝐼 = 𝑓 (𝜈)} (see figure 17‑
(I)). Then take an arbitrary point 𝐴 ∈ 𝜇 and 𝐵 ∈ 𝜈 such that 𝐴𝐵 is parallel to 𝜇′. The
image‑triangle 𝐴′𝐵′𝑂′ of 𝐴𝐵𝑂 will have the side 𝐴′𝐵′ parallel to 𝜇″ and we can easily

O(A')

O'
(B) I (B')

A

O(A')

B O'
B'J(A)

(I) (II)

ν' μ''

Figure 18: Detecting the orientations of {△𝑂𝐴𝐵 , △𝑂′𝐴′𝐵′}

see that the two triangles have the same orientation. In fact, deforming continuously the
two triangles without to change their orientation, we can bring them in the configuration
of figure 18‑(I), showing that the triangles are equally oriented. In the case points (𝑂, 𝑂′)
belong to different components, analogous work illustrated by figure 17‑(II) and subse‑
quent deformation illustrated by figure 18‑(II) shows that the two triangles are oppositely
oriented.

Corollary 5. Affinities whose intersection conic is an ellipse or a parabola preserve the orienta‑
tion. This is true also for affinities whose intersection conic is a hyperbola, but the pair of points
(𝑂, 𝑂′) generating it belongs to the same component. If the intersection conic is a hyperbola
and the generating points {(𝑂, 𝑂′)} belong to different components, then the affinity reverses the
orientation.

Theorem 11. Every conic 𝜆 is the conic of intersections of an equiaffinity.

Proof. Given the conic 𝜆, it suffices to find an adapted pair of triangles of equal areas
and equal orientations. Figure 19 illustrates this in the case of an ellipse. In this we
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Figure 19: Arbitrary conic 𝜆 generated by an appropriate equiaffinity

consider two arbitrary points {𝑂, 𝑂′} of 𝜆 and take 𝐷 ∈ 𝜆 on the conjugate diameter
of 𝜇′ = 𝑂𝑂′ passing through the middle 𝐴 of 𝜇. Using the method of theorem 7we con‑
struct the triangle 𝑂𝐵𝐶. By the discussion in this section we know that 𝑂″ = 𝑓 (𝑂′) is on
line 𝐽𝑂′ and 𝐵 = 𝑓 (𝐴) is the middle of 𝑂′𝑂″ = 𝑓 (𝑂𝑂′), since 𝐴 is the middle of 𝑂𝑂′.
Since {𝐴𝐵, 𝐽𝐶} are parallels the triangles {𝐴𝐵𝐽, 𝐴𝐵𝐶} have equal areas and both contain
the triangle 𝐴𝑂′𝐵. This implies the equality of the areas of triangles {𝑂′𝐵𝐶, 𝑂′𝐴𝐽} latter
having the same area with △ 𝑂𝐽𝐴. The equiaffinity satisfying the requirements, as usual
is defined by the correspondence of vertices of triangles {𝐴𝑂𝐽, 𝐵𝑂′𝐶}.



The conic of intersections of an affinity 33

D

J

O

O' E

C

B

J

O

O'

A

E

C B

A

Figure 20: Arbitrary hyperbola/parabola generated by an appropriate equiaffinity

Figure 20 illustrates the corresponding construction in the case of hyperbolas and
parabolas. In the hyperbola the points {𝑂, 𝑂′} are taken on one branch and 𝐷 on the
other. In the case of the parabola lines {𝐴𝐽, 𝑂′𝐸} are parallel to the axis. Also in these
cases it is easily verified that the triangles {𝐴𝑂𝐽, 𝐵𝑂′𝐶} of the adapted pair satisfy the
requirements.

9 Affinities without fixed points related to hyperbolas

Here we complement the discussion initiated in section 7 examining the possibility to
define an affinity 𝑓 without fixed points having a given non degenerate conic 𝜆 as its conic
of intersections. By theorem 8(5) the conic 𝜆 cannot be an ellipse. Thus, we seek to define
an affinity without fixed points, having corresponding conic of intersections a hyperbola
or a parabola. Here we examine the case of hyperbolas.

By the general properties analyzed in theorem 2, the affinity 𝑓 induces in its conic
of intersections 𝜆 a natural structure consisting of two points {𝑂, 𝑂′} in 𝜆, the tangents
{𝜇, 𝜇″} there and the line 𝜇′ = 𝑂𝑂′. Thus, we can start from an arbitrary such structure
on the given conic and seek to define a corresponding affinity. In the case of hyperbola a
crucial role in our study plays the following property (see Figure 21).
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Figure 21: A property of the hyperbola

Lemma 2. Let {𝛼, 𝛽} be the asymptotes of the hyperbola 𝜆. Let {(𝐴″, 𝐵), (𝐴, 𝐵″)} be the inter‑
sections of the asymptotes with the tangents at the points {𝑂, 𝑂′} and {𝐴′, 𝐵′} be the intersections
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of the asymptotes with the line 𝑂𝑂′. Then {𝐴𝐵, 𝐴′𝐵′, 𝐴″𝐵″} are parallel lines and 𝐴′𝐵′ is the
middle‑parallel of the other two.

Proof. Consider the intersection 𝐷 = 𝐴″𝐵 ∩ 𝐴𝐵″ and the line 𝛾 = 𝐾𝐷, point 𝐾 being
the center of the hyperbola. The diagonals {𝐴𝐵, 𝐴″𝐵″} of the quadrilateral 𝐴𝐾𝐵𝐷 and
the sides {𝐴𝐵, 𝐴″𝐵″} of the quadrilateral 𝐴𝐵″𝐴″𝐴′ intersect on the harmonic conjugate
line 𝛾′ of 𝛾 w.r.t. {𝛼, 𝛽}. Hence, the three lines {𝐴𝐵, 𝐴′𝐵′, 𝐴″𝐵″} pass through a point of
𝛾′. The line from this point to 𝐾 intersects the tangents {𝐴𝐵″, 𝐴″𝐵} at the points {𝐿, 𝑀}
and the cross ratios are equal:

(𝐴″𝐵; 𝑂𝑀) = 𝑂𝐴″

𝑂𝐵 ∶ 𝑀𝐴″

𝑀𝐵 = (𝐵″𝐴; 𝑂′𝐿) = 𝑂′𝐵″

𝑂′𝐴 ∶ 𝐿𝐵″

𝐿𝐴 ⇒ 𝑀𝐴″

𝑀𝐵 = 𝐿𝐵″

𝐿𝐴 , (11)

since, by the well known property of hyperbolas 𝑂𝐴″/𝑂𝐵 = 𝑂′𝐵″/𝑂′𝐴 = −1. The fact
that {𝐿𝑀, 𝐴𝐵, 𝐴″𝐵″}pass through the samepoint and the equality 11 imply that these lines
are parallel. This follows easily from the equality of cross ratios (𝐴𝐷; 𝑂𝑀) = (𝐵″𝐷; 𝑂′𝐿)
and leads to the proof of the lemma.
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Figure 22: Defining an affinity without fixed points

Figure 22 illustrates the procedure of definition of an affinity 𝑓 without fixed points
having a given hyperbola as its conic of intersections. The starting point are two points
{𝑂, 𝑂′} on 𝜆 and the tangents there {𝜇, 𝜇″}. By lemma2, the intersection points 𝐶 = 𝜇 ∩ 𝛼,
𝐶′ = 𝜇′ ∩ 𝛼, 𝐶″ = 𝜇″ ∩ 𝛼, where 𝛼 an asymptotic line of 𝜆 and 𝜇′ = 𝑂𝑂′, define seg‑
ments 𝐶𝐶′ = 𝐶′𝐶″. We define 𝑓 as the affinity mapping the vertices of triangle 𝑂𝐶𝐶′ to
corresponding vertices of the triangle 𝑂′𝐶′𝐶″. It follows that 𝑓 (𝜇) = 𝜇′ , 𝑓 (𝜇′) = 𝜇″ and
𝑓 (𝛼) = 𝛼 i.e. line 𝛼 remains invariant under 𝑓 . Denoting by 𝜆+ the conic of intersections
of 𝑓 , we see easily that 𝜆+ has {𝜇, 𝜇″} as tangents at 𝑂, 𝑂′ and that it is a hyperbola hav‑
ing 𝛼 as asymptote, mapping a point 𝑍 ∈ 𝛼 to 𝑍′ with 𝑍𝑍′ = 𝐶𝐶′. The following easily
to prove properties of 𝜆+ lead to its identification with 𝜆 (see Figure 23).

1. The equality 𝑍𝑍′ = 𝐶𝐶′, taking in particular 𝑍 such that 𝑍𝑂 is parallel to the other
asymptote 𝛽 of 𝜆 makes 𝑍′𝑂′ parallel to 𝑍𝑂 showing that the other asymptote of
𝜆+ is also parallel to 𝛽.

2. This implies that a line 𝜀 parallel to 𝛽 is shifted by the vector 𝑣 = 𝑍𝑍′ = 𝐶𝐶′ to a
parallel 𝜀′.

3. The parallel 𝛼′ to 𝛼 from 𝑂 maps to the parallel 𝛼″ from 𝑂′. More general a
parallel 𝛾 to 𝛼 maps to a parallel 𝛾′ to 𝛼 and if 𝑋 = 𝜇′ ∩ 𝛾 and 𝑌 = 𝜇′ ∩ 𝛾′, then
𝑋𝐶′/𝑌𝐶′ = 𝑂𝐶′/𝑂′𝐶′ = 𝑘 is constant.
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Figure 23: Identifying 𝜆 with 𝜆+

4. If for a point 𝐼 = 𝜈 ∩ 𝜈′ of 𝜆+ the image point 𝐼′ = 𝑓 (𝐼) ∈ 𝜈′, where {𝜈, 𝜈′ = 𝑓 (𝜈)}
are lines through {𝑂, 𝑂′}generating the hyperbola 𝜆+ and 𝑍 = 𝜈 ∩ 𝛼, 𝑍′ = 𝑓 (𝑍) ∈ 𝜈′,
then 𝐼𝑍′/𝐼′𝑍′ = 𝑂𝐶′/𝑂′𝐶′ = 𝑘.

5. If {𝐽, 𝐽′} are the projections of {𝐼, 𝐼′} parallel to 𝛽 on 𝛼, then 𝐽𝐽′ = 𝑍𝑍′ = 𝐶𝐶′ and
𝑍𝐽 = 𝑍′𝐽′.

6. When 𝐼 takes the position 𝑂, the corresponding 𝑍 obtains the position of 𝐶 and
𝐼𝑍 = 𝜇 is the tangent to both 𝜆 and 𝜆+. Then, the symmetric of 𝑍 = 𝐶 w.r.t. 𝑂
projects parallel to 𝛽 on the center 𝐾 of the hyperbola 𝜆. As the other than 𝛼
asymptote of 𝜆+ is parallel to 𝛽 the preceding property implies that 𝐾 is also the
center of 𝜆+.

7. Since the two conics {𝜆, 𝜆+} have at {𝑂, 𝑂′} the same tangents and also have the
same center, they are identical.

Since the projection 𝐽𝐽′ of 𝐼𝐼′ on 𝛼 parallel to 𝛽 has constant length 𝐽𝐽′ = 𝐶𝐶′ we have
𝐼 ≠ 𝐼′ for all positions of 𝜈 and the affinity 𝑓 has no fixed point. Introducing coordinates
along the asymptotes of 𝜆, the representation of 𝑓 is:

𝑥′ = 𝑥 + 𝑣1,
𝑦′ = 𝑘 ⋅ 𝑦,

where 𝑣1 = 𝐶𝐶′ and 𝑘 = 𝑂𝐶′/𝑂′𝐶′ is a constant ratio of signed lengths. This represents
a generalization of the affine glide reflection, which is a composition 𝑓 = ℎ ∘ 𝑔 with 𝑔 a
strain with axis 𝛼 and ratio 𝑘 and ℎ is a translation by a vector (𝑣 = (𝑣1, 0)) parallel to
the axis of the strain. We formulate all that as a theorem.

Theorem 12. Any hyperbola is the conic of intersections of an affinity 𝑓 without fixed points,
represented as a composition 𝑓 = ℎ ∘ 𝑔 of a strain 𝑔 and a translation ℎ parallel to the axis of the
strain.

10 Affinities without fixed points related to parabolas

Figure 24 illustrates the construction of an affinity 𝑓 without fixed points having a given
parabola 𝜆 as its conic of intersections. In this we start with two arbitrary points {𝑂, 𝑂′}
on the parabola and the tangents {𝜇, 𝜇′} at these points intersecting at the point 𝐽. The
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triangle 𝑂𝐴𝐽 is defined by the intersection of line 𝜇′ = 𝑂𝑂′ and the parallel to the axis 𝜀
of the parabola. The side 𝐵𝐶 of the triangle 𝑂′𝐵𝐶 is the symmetric of 𝐽𝐴 w.r.t. 𝑂′. The
affinity 𝑓 is defined by the correspondences {𝑂 ↦ 𝑂′ , 𝐽 ↦ 𝐶 , 𝐴 ↦ 𝐵.} By theorem 2 the
conic 𝜆+ of intersections 𝐼 of 𝑓 passes through {𝑂, 𝑂′} and is tangent there to the lines
{𝜇, 𝜇″}. The affinity maps the middle 𝑀 of 𝐴𝐽 to the middle 𝑀′ of 𝐶𝐵 and line 𝑀𝑀′

passes through 𝑂′, implying that 𝑀 = 𝑂𝑀 ∩ 𝑂′𝑀′ is a point of 𝜆+. Thus, the two conics
{𝜆, 𝜆+} belong to the bitangent pencil {𝑠 ⋅ 𝜇𝜇″ + 𝑡 ⋅ 𝜇′2, 𝑠, 𝑡 ∈ ℝ} and pass both through 𝑀,
hence they are identical. It is easily seen that a line 𝛼 parallel to the axis 𝜀 of the parabola
maps to a parallel 𝛼′. Finally the distance 𝑑 of the two parallels {𝛼, 𝛼′} is constant.
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Figure 24: Affinity without fixed points related to a given parabola

In fact, if {𝑌 = 𝛼 ∩ 𝜇 , 𝑌′ = 𝑓 (𝑌) = 𝛼′ ∩ 𝜇′}, then 𝑂𝐽/𝐽𝑌 = 𝑂′𝐶/𝐶𝑌′ and the fact that
𝐴 is the middle of 𝑂𝑂′ for a parabola, implies that the distance of the parallels {𝐽𝐴, 𝛼} is
equal to the distance of their images {𝐶𝐵, 𝛼′}. This implies that 𝑑 is equal to the distance
of the parallels {𝐽𝐴, 𝐶𝐵} which is constant. A consequence of this is that the parallels to
𝜀 through the points {𝐼, 𝐼′ = 𝑓 (𝐼)} are at a distance 𝑑, hence the points {𝐼, 𝐼′} are never
coincident and 𝑓 has no fixed points.

Taking point 𝑂′ as origin of a cartesian coordinate system with axis parallel resp.
perpendicular to the axis 𝜀 of the parabola we find easily the expression of the affinity in
the form:

𝑥′ = 𝑥 + 𝑘⋅𝑦 + 𝑣1,
𝑦′ = 𝑦 + 𝑣2,

with constants {𝑘, 𝑣1, 𝑣2}, representing the composition of a shear and a translation. We
formulate these results as a theorem.

Theorem 13. Any parabola is the conic of intersections of an affinity 𝑓 without fixed points,
represented as a composition 𝑓 = ℎ ∘ 𝑔 of a shear 𝑔 and a translation ℎ.

11 Orbital conics of equiaffinities

As we noticed earlier “equiaffinities” build a subgroup of the group of affinities and, per
definition, preserve the areas of triangles. This has some implications among which an
important one ([3]) is the fact that the “orbit” of a point 𝑋 i.e. the sequence of points
{𝑋, 𝑓 (𝑋), 𝑓 2(𝑋), …} is contained in one conic. Something that is not valid for a general
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affinity 𝑓 . Here we show that the conic containing an orbit of the equiaffinity is a dilata‑
tion of the conic of intersections. For this we need some additional properties concern‑
ing the relation of a conic of intersections and its image, illustrated in figure 25. In this,
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Figure 25: Conic of intersections 𝜆 of an equiaffinity and its image 𝜆′ = 𝑓 (𝜆)

as usual, {𝜆, 𝜆′ = 𝑓 (𝜆)} denote the conic of intersection and its image under the affinity.
Points {𝑂, 𝑂′ = 𝑓 (𝑂)} are used to generate 𝜆 through the intersection points {𝐼}. As we
noticed already, lines through 𝑂′ intersect a second time the conics 𝜆, 𝜆′ at points {𝐼, 𝐼′}
corresponding under the affinity 𝑓 . In particular point 𝑂″ = 𝑓 (𝑂′) of 𝜆′ is on the tangent
to 𝜆 at 𝑂′. In the figure points {𝐿′, 𝐿″} are respectively the intersections of the line 𝑂𝑂″

with the two conics {𝜆′, 𝜆} and the points {𝐿, 𝐿‴} are defined by {𝑓 (𝐿) = 𝐿′, 𝑓 (𝐿″) = 𝐿‴}.
Also 𝑀𝑂′ is parallel to 𝐿′𝐿″. In the following, saying that “𝜆′ is a dilatation of 𝜆 ”, we
mean that 𝜆′ is indeed a dilatation of 𝜆 or a dilatation of the conjugate 𝜆∗ in the case 𝜆
is a hyperbola. We make also the following observations:

1. △ 𝑂𝑂′𝑀 maps via 𝑓 to △ 𝑂′𝑂″𝑀′. The two triangles have the same area and that
of the second is equal to the area of △ 𝑂𝑂′𝑀′, implying that 𝑀𝑂′ = 𝑂′𝑀′.

2. △ 𝑀𝑂𝐿 maps via 𝑓 to △ 𝑀′𝑂′𝐿′ of equal area, later equal to the area of △ 𝑂𝑀𝑂′,
because 𝑀𝑀′ ∥ 𝐿′𝐿″ and 𝑀𝑂′ = 𝑂′𝑀′. Thus, triangles {𝑀𝑂𝐿 , 𝑀𝑂𝑂′} have equal
areas and 𝑀𝑂 is parallel to 𝐿𝐿′.

3. It follows that 𝑀𝑂′𝐿′𝑂 is a parallelogram, 𝑂𝐿′ = 𝑀𝑂′ = 𝑂′𝑀′ and 𝑂′𝑀′𝐿′𝑂 is
also a parallelogram.

4. By theorem 9 𝐿″ = 𝑓 (𝐿′), consequently △ 𝑂𝐿𝐿′ maps via 𝑓 to △ 𝑂′𝐿′𝐿″ of equal
area, the two triangles sharing the area of △ 𝑂𝑂′𝐿′. This implies that the triangles
{𝑂𝑂′𝐿, 𝑂𝑂′𝐿″} have the same area, hence 𝑂𝑂′ is parallel to 𝐿𝐿″.

5. For the same reason triangles 𝑂𝑂′𝐿′, 𝑂′𝑂″𝐿″ correspond via 𝑓 and have equal area,
implying that 𝑂″𝐿″ = 𝑂𝐿′.

6. Since {𝐿𝐿″, 𝑂′𝑂} are parallel chords of 𝜆 the middle 𝑁 of 𝐿𝐿″ defines their conju‑
gate direction which is line 𝑁𝐿′ and passes also through the middle of 𝑂𝑂′. Since
𝑂′𝑀′𝐿′𝑂 is a parallelogram line 𝑁𝐿′ passes through 𝑀.

7. The tangent to 𝜆 at 𝑀 is parallel to 𝐿𝐿″ ∥ 𝑂𝑂′ latter being the tangent of 𝜆′ at 𝑂′.
8. The tangent to 𝜆 at 𝑀 which is parallel to 𝑂𝑂′ maps via 𝑓 to the tangent at 𝑀′

of 𝜆′ which must be parallel to 𝑂′𝑂″ which is tangent to 𝜆 at 𝑂′. Also since 𝐿𝐿″

and the tangent to 𝜆 at 𝑀 are parallel and map to 𝐿′𝐿‴ and the tangent to 𝜆′ at
𝑀′, these two lines must be parallel to, implying that 𝐿′𝐿‴ ∥ 𝑂′𝑂″.
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9. The lines {𝐿′𝐿″, 𝑀𝑀′} being parallel define a trapezium and {𝐿′𝑀, 𝐿″𝑀′ = 𝑓 (𝐿′𝑀)}
are its diagonals. If they intersect, then, from the properties of trapezia, their in‑
tersection point 𝐷 satisfies 𝑀𝐷/𝐷𝐿′ = 𝑀′𝐷/𝐷𝐿″ , hence coincides with the fixed
point of the affinity.

10. Triangle 𝐿𝐿′𝐿″ maps via 𝑓 to triangle 𝐿′𝐿″𝐿‴ of equal area, hence line 𝐿𝐿‴ is
parallel to 𝐿′𝐿″.

Theorem 14. The image 𝜆′ = 𝑓 (𝜆) of the conic of intersections 𝜆 of an equiaffinity 𝑓 is a trans‑
lation of 𝜆.

Proof. In fact, by the preceding observations, the translation 𝑡𝑣 by the oriented segment
𝑣 = 𝑂𝐿′ maps the points {𝑂, 𝑂′, 𝑀, 𝐿″} of 𝜆 respectively to {𝐿′, 𝑀′, 𝑂′, 𝑂″} and the tan‑
gents to 𝜆 at {𝑀, 𝑂′} respectively to the tangents of 𝜆′ at {𝑂′, 𝑀′}, all this guaranteeing
([10]) that 𝜆′ = 𝑡𝑣(𝜆).

Corollary 6. The line 𝑃𝑄 joining the middles {𝑃, 𝑄} of the parallel chords {𝐿″𝑂, 𝐿𝑅} of 𝜆 is
parallel to the line 𝑆𝑇 joining the middles of the segments {𝐿′𝐿″, 𝐿𝐿‴} (see Figure 25).

Proof. This follows from a trivial property of trapezia, according to which the line join‑
ing the middles of its parallel sides has a fixed direction if the sides of the trapezia have
also fixed directions. The claim follows from this and the fact, that {𝐿𝐿‴𝐿′𝐿″, 𝐿𝑅𝑂𝐿″} are
trapezia having their parallel sides on the same lines and their sides {𝐿′𝐿‴, 𝑂𝑅} parallel,
since, by the preceding theorem 𝑅𝐿‴𝐿′𝑂 is a parallelogram.
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Figure 26: Orbital conic 𝜎 is a dilatation of 𝜆

Theorem 15. A conic 𝜎 containing an orbit of an equiaffinity 𝑓 is a dilatation of a conic of
intersections 𝜆 of 𝑓 and is non‑degenerate if and only if 𝜆 is non‑degenerate.

Proof. We use the point 𝐿 ∈ 𝜆 of theorem 9 with 𝑓 2(𝐿) ∈ 𝜆 and the observations re‑
lated to theorem 14. We consider the orbital conic 𝜎 containing the sequence of points
{𝐿 , 𝐿′ = 𝑓 (𝐿) , 𝐿″ = 𝑓 (𝐿′) , …} (see Figure 26).

From the aforementioned observations follows that the triangles {𝐿𝐿′𝐿″ , 𝑂𝑀𝑂′} have
parallel corresponding sides and the same happens also for triangles {𝑂′𝑀′𝑂″, 𝐴𝐿″𝐿‴}.
Besides, from the same observations follows that {𝐿𝐿‴, 𝐿′𝐿″} are parallel chords of 𝜎
and, consequently, the line 𝑂′𝑆 joining their middles is the conjugate direction of 𝐿′𝐿″

w.r.t. 𝜎. From corollary 6 we have however that the directions of the lines {𝐿′𝐿″, 𝑂′𝑆}
are conjugate also w.r.t. 𝜆. Hence the two conics {𝜆, 𝜎} have a common pair of conjugate
directions.
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The construction of the configuration of the four triangles 𝐿𝐿′𝐿″ , 𝑂𝑀𝑂′ , 𝐿′𝐿″𝐿″ ,
𝑂′𝑀′𝑂″ depending on 𝐿 can be repeated starting with 𝐿′ = 𝑓 (𝐿). This leads to a similar
configuration of four triangles and a pair of directions {𝐿″𝐿‴, 𝑂″𝑆′} which are conjugate
w.r.t. both conics {𝜆′, 𝜎}. But, since 𝜆′ is a translation of 𝜆, they are common conjugate
also to 𝜆, 𝜎 .

The result follows from the fact, that two non‑degenerate conics with two common
pairs of conjugate directions represented in a cartesian coordinate system have propor‑
tional quadratic coefficients. In fact, assuming ( (a,b)) and (𝑐, 𝑑) are pairs of unit vectros
expressing two common conjugate directions of the conics 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + ... = 0
and 𝐴′𝑥2 + 2′𝐵′𝑥𝑦 + 𝐶′𝑦2 + ... = 0, the conjugacy condition implies that both triples of
coefficients satisfy the equations:

𝐴𝑎1𝑏1 + 𝐵(𝑎1𝑏2 + 𝑎2𝑏1) + 𝐶𝑎2𝑏2 = 0,
𝐴𝑐1𝑑1 + 𝐵(𝑐1𝑑2 + 𝑐2𝑑1) + 𝐶𝑐2𝑑2 = 0.

⎫}
⎬}⎭

(12)

Thus, considering this as a linear system of equations for three‑dimensional vectors, the
vectors {(𝐴, 𝐵, 𝐶) , (𝐴′, 𝐵′, 𝐶′)} must be both multiples of the exterior product

⎛⎜⎜⎜
⎝

𝑎1𝑏1
𝑎1𝑏2 + 𝑎2𝑏1

𝑎2𝑏2

⎞⎟⎟⎟
⎠

× ⎛⎜⎜⎜
⎝

𝑐1𝑑1
𝑐1𝑑2 + 𝑐2𝑑1

𝑐2𝑑2

⎞⎟⎟⎟
⎠

.

This implies the proportionality of the quadratic terms, on which depend the main char‑
acteristics of the conics showing, as in the theorem 4, that each is a dilatation of the other.
We notice here that, if the conic 𝜆 is non‑degenerate, then also the orbital conic is non‑
degenerate and vice versa. This follows from the similarity of the triangles {𝑂𝑀𝑂′, 𝐿𝐿′𝐿″}
which are respectively inscribed in the two conics.
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