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TRIANGLES SHARING THEIR EULER CIRCLE AND CIRCUMCIRCLE

PARIS PAMFILOS

Abstract. In this article we study properties of triangles with given circumcircle and
Euler circle. They constitute a one-parameter family of which we determine the triangles
of maximal area/perimeter. We investigate in particular the case of acute-angled trian-
gles and their relation to poristic families of triangles. This relation is described by an
appropriate homography, whose properties are also discussed.

1 Introduction

The scope of this article is to explore properties of triangles sharing their “Euler circle”
^(𝑁, 𝑟) and their circumcircle ^′(𝑂, 2𝑟). All these triangles for fixed {^, ^′} are called
“admissible”, and as we’ll see shortly, they constitute a one-parameter family, which we
call an “admissible family of triangles”. By well known theorems, for which a good reference
is the book by Court [3], the Euler circle has its center 𝑁 on the “Euler line” Y midway
between the circumcenter 𝑂 and the orthocenter 𝐻 of the triangle 𝐴𝐵𝐶 (See Figure 1).
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Figure 1: Euler line and circle

In principle, the location of these two points, which lie symmetrically w.r. to 𝑁, can be
arbitrary within certain bounds to be noticed below. Assuming the Euler circle to be con-
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tained totally inside the circumcircle ^′(𝑂, 2𝑟) we can define corresponding admissible
triangles as follows.

We select an arbitrary point 𝐵′ on ^ and draw the line 𝐴𝐶 orthogonal to 𝑂𝐵′ inter-
secting ^′ at {𝐴,𝐶}. A third point 𝐵 and a triangle 𝐴𝐵𝐶 defining an admissible triangle is
found using the centroid 𝐺 of the triangle, lying also on line Y, its position dividing the
segment 𝑂𝑁 in ratio 𝑂𝐺/𝐺𝑁 = 2. The location of the third point 𝐵 is on the intersection
𝐵′𝐺 ∩ ^′.

The proof that the created triangle 𝐴𝐵𝐶 is admissible, is an easy exercise, which can
start by observing the similarity of the triangles {𝐺𝑂𝐵′, 𝐺𝐻𝐵} which are (anti)homothetic
w.r. to 𝐺 and in ratio 1/2. This homothety, or equivalently the parallelity of 𝐵𝐻 to 𝑂𝐵′,
is also the criterion of choosing between 𝐵 and its antipode w.r. to ^′.

The shape of the thus created admissible triangles depends on the relation of the ra-
dius 𝑟 to the distance ℎ = |𝐻𝑁 | = |𝑁𝑂 |. For 𝑟 > ℎ all these triangles are acute-angled
as in figure 1. For 𝑟 = ℎ the triangles are right-angled as in figure 2, in which {𝐵′, 𝐻}
are respectively identical with {𝑂, 𝐵} and the Euler line is the median 𝐵𝐵′ of the trian-
gle. Figure 3 shows the case of 𝑟 < ℎ for which all admissible triangles are obtuse. The
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Figure 2: The case of right-angled triangles

possible locations of 𝐵′ extend not to the whole of ^ but only to the arc of the circle
contained inside the circumcircle ^′. If 𝐵′ obtains the position of one of the extremities
{𝑃,𝑄} of this arc, then the corresponding line orthogonal to 𝑂𝐵′ at 𝐵′ is tangent to ^′

and no genuine admissible triangle 𝐴𝐵𝐶 can be defined. The chords {𝑃𝐺𝑃′, 𝑄𝐺𝑄′} of
^′ intersect ^ at two points {𝑃0, 𝑄0} which are positions of 𝐵′ for which the correspond-
ing triangle degenerates correspondingly to the segments {𝑃𝑃′, 𝑄𝑄′}. The case ℎ ≥ 3𝑟 is
not possible, since then for all positions of 𝐵′ ∈ ^ no genuine admissible triangle can be
defined. Thus, given the position of 𝑁 on line Y, the point 𝐻 or equivalently 𝑂 has to
be selected at a distance from 𝑁 less than 3𝑟.

2 Area and perimeter variation

Given the Euler circle ^ and the circumcircle ^′ and considering, for the time being, the
case of acute-angled triangles, we can study the variation of the area and perimeter of the
admissible triangles in dependence of the variable point 𝐵′ ∈ ^. First we should observe
that, because of the symmetry of the figure w.r. to line Y (See Figure 4), the different
shapes of the admissible triangles are all obtained for the positions of 𝐵′ within the arc
𝐵1𝐵2 of ^. The two extremities {𝐵1, 𝐵2} of this arc are precisely the midpoints of the
corresponding sides {𝐴𝐶} of the two unique isosceli admissible triangles {𝜏1, 𝜏2} which
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Figure 3: The case of obtuse-agled triangles

are symmetric w.r. to Y. A similar discussion for the circumcircle and the incircle can be
found in [1].

Theorem 1. With the notation and conventions introduced so far, the two triangles {𝜏1, 𝜏2}
possess the maximal resp. minimal area and perimeter among the admissible ones.

Proof. By the preceding remark, to find the maximal/minimal area/perimeter of the ad-
missible triangles it suffices to examine those for which the middle 𝐵′ of their side 𝐴𝐶

is on the indicated arc 𝐵1𝐵2. Thus, it suffices to show that the area and the perimeter are
decreasing as 𝐵′ moves on this arc from 𝐵1 towards 𝐵2.

For the area this can be seen by expressing it in terms of 𝑏 = |𝐴𝐶 | and the altitude
𝑢 = |𝐵𝐵′′ |, as a function 𝑓 (𝑥) of 𝑥 = |𝑂𝐵′ |, varying in the interval corresponding to the
arc 𝐵1𝐵2. Latter is readily seen to be

𝑟 − ℎ ≤ 𝑥 ≤
√︁
𝑟 (𝑟 − ℎ) . (1)

Considering positive areas and using 𝑓 2(𝑥) instead, we find the expressions:

𝑏2 = 4(4𝑟2 − 𝑥2), |𝐵𝐵′′ | = 2|𝑂𝐵′ | + |𝐻𝐵′′ | = 2𝑥 + 𝑦 with 𝑥𝑦 = 𝑟2 − ℎ2 ⇒

|𝐵𝐵′′ | = 2𝑥2 + 𝑟2 − ℎ2
𝑥

⇒ 𝑓 2(𝑥) =
(4𝑟2 − 𝑥2) (2𝑥2 + 𝑟2 − ℎ2)2

𝑥2
.

Doing a bit of calculus we see that this is indeed strictly decreasing in the interval (1).
Analogously, the decreasing behavior of the perimeter can be seen by expressing it in

terms of {𝑢 = |𝐵𝐵′′ |, 𝑏 = |𝐴𝐶 |, 𝑣 = |𝐵′𝐵′′ |} and doing some computation:

𝑣2 = (2ℎ)2 − (𝑦 − 𝑥)2 ⇒
𝑎2 = 𝑢2 + (𝑏/2 + 𝑣)2, 𝑐2 = 𝑢2 + (𝑏/2 − 𝑣)2 ⇒

𝑎2 + 𝑐2 = 2𝑢2 + 𝑏2/2 + 2𝑣2 = 4(𝑥2 + 5𝑟2 − ℎ2) ,

𝑎 · 𝑐 =
4𝑟 (2𝑥2 + 𝑟2 − ℎ2)

𝑥
⇒ (𝑎 + 𝑐)2 =

4((𝑥 + 𝑟)2 − ℎ2) (𝑥 + 2𝑟)
𝑥

⇒

𝑎 + 𝑏 + 𝑐 = 2
√
2𝑟 + 𝑥

(
√
2𝑟 − 𝑥 +

√︂
(𝑥 + 𝑟)2 − ℎ2

𝑥

)
.
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Figure 4: Calculating the area

Doing again a bit of calculus we see that the function is decreasing in the interval (1).
Figure 5 gives an impression of the behavior of this perimeter function, modified by a
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Figure 5: The perimeter function

small multiplicative factor, in the interval 𝑥1 = 𝑟 − ℎ ≤ 𝑥 ≤ 𝑟 + ℎ = 𝑥3, with 𝑥2 =
√︁
𝑟 (𝑟 − ℎ)

defining the right end of the interval (1). □

Corollary 1. The area (𝐴𝐵𝐶) resp. perimeter 2𝜏 of the triangle 𝐴𝐵𝐶 with given Euler circle
^(𝑁, 𝑟) and distance from the orthocenter |𝐸𝑁 | = ℎ < 𝑟 is bounded by

(3𝑟 + ℎ)
√︁
4𝑟2 − (𝑟 + ℎ)2 ≤ (𝐴𝐵𝐶) ≤ (3𝑟 − ℎ)

√︁
4𝑟2 − (𝑟 − ℎ)2 , (2)

2(
√
𝑟 − ℎ + 2

√
𝑟)
√
3𝑟 + ℎ ≤ 2𝜏 ≤ 2(

√
𝑟 + ℎ + 2

√
𝑟)
√
3𝑟 − ℎ . (3)

Remark 1. On the ground of a geometric definition of the ellipse, it can be proved and
is well known ([17], [18, p.131]) that all admissible triangles have the following property,
which we formulate as a theorem, giving also another aspect of the pair of points {𝑂, 𝐻}.

Theorem 2. All triangles sharing the same Euler circle ^(𝑁, 𝑟) and circumcircle ^′(𝑂, 2𝑟), and
satisfying ℎ = |𝐻𝑁 | = |𝑂𝑁 | < 𝑟 have their sides tangent to the ellipse with focals at {𝐻,𝑂} and
eccentricity ℎ/𝑟. Their corresponding side-lines are the orthogonal bisectors of the segments 𝐻𝑃,
where 𝑃 is a point varying on the circumcircle ^′ (See Figure 6).

3 Obtuse and right-angled trianlges

Continuing with the notation and conventions of the preceding sections, the case of obtuse
admissible triangles, characterized by the condition 𝑟 < ℎ, is illustrated by figure 7. In
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this case the side-lines of the admissible triangles envelope a hyperbola with “auxiliary
circle” ^ and “circular-directrix” ^′. By studying the variation of the chord 𝐴𝐶, we see
easily that the measure of the obtuse angle 𝜔 varies between two values
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Figure 7: Enveloping hyperbola of side-lines of admissible obtuse triangles

𝜔1 ≤ 𝜔 ≤ 𝜔2 . (4)

The smaller 𝜔1 is the apex-angle of the maximal isosceles 𝜏1 and the bigger one is the
angle 𝜔2 to which tends the measure of the obtuse angle, as the triangle tends to degen-
eration to the (double) segment 𝑃𝑃′. Notice that in this case the vertex 𝐴 of the variable
triangle 𝐴𝐵𝐶 tends to 𝑃′ and the side-line 𝐵𝐶 tends to the tangent 𝛿 of ^′ at 𝑃. Since
this side-line is all the time tangent to the hyperbola, 𝛿 is also tangent to it. Analo-
gous to the inequalities (4) are satisfied by the measures of the angles also in the case of
acute-angled triangles. In this case {𝜔1, 𝜔2} are correspondingly the apex-angles of the
minimal resp. maximal isosceli. Next theorem formulates the analogous to theorem 2 for
obtuse-angled triangles.
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Theorem 3. All triangles sharing the same Euler circle ^(𝑁, 𝑟) and circumcircle ^′(𝑂), and
having ℎ = |𝐻𝑁 | > 𝑟 have their sides tangent to the hyperbola with focals at {𝐻,𝑂} and eccen-
tricity ℎ/𝑟 . Their corresponding side-lines are the orthogonal bisectors of the segments 𝐻𝑃,

where 𝑃 is a point varying on the circumcircle ^′ (See Figure 7).

The necessary computations for the area and the perimeter of admissible obtuse-
angled triangles may proceed in a way similar to the one we used for acute-angled, de-
livering corresponding formulas for the area and the perimeter:

(𝐴𝐵𝐶) =
(ℎ2 − (2𝑥2 + 𝑟2))

√
4𝑟2 − 𝑥2

𝑥
, 2𝜏 = 2

(
√
4𝑟2 − 𝑥2 +

√︂
(2𝑟 − 𝑥) (ℎ2 − (𝑥 − 𝑟)2)

𝑥

)
.

As suggested by figure 7, in this case the side-lines of the admissible triangles are tangent
to a hyperbola with focals {𝐻,𝑂}. The critical, degenerated to segments, triangles are
tangent to the hyperbola at its intersections {𝑃′, 𝑄′} with the circumcircle ^′(𝑂, 2𝑟) of
the triangles. Again, by the symmetry of the figure, it is seen that all possible shapes
of admissible triangles are obtained when 𝐵′ varies inside the arc 𝐵1𝐵2 of the circle ^,

where 𝐵1 is the intersection of ^ and the segment 𝑁𝑂 and 𝐵2 is the projection of 𝑂 on
𝑄𝑄′. These correspond, for the variable 𝑥 = |𝑂𝐵′ |, to the endpoints of the interval

ℎ − 𝑟 ≤ 𝑥 ≤
√︁
2(ℎ2 − 𝑟2),

at which the area/perimeter obtains its maximum and minimum value. We formulate
this as a corollary, showing that the upper bounds are the same for the two cases whereas
the lower bounds are different.

Corollary 2. The area (𝐴𝐵𝐶) resp. perimeter 2𝜏 of the triangle 𝐴𝐵𝐶 with given Euler circle
^(𝑁, 𝑟) and distance from the orthocenter |𝑁𝐻 | = ℎ > 𝑟 is bounded by

0 ≤ (𝐴𝐵𝐶) ≤ (3𝑟 − ℎ)
√︁
4𝑟2 − (𝑟 − ℎ)2 , (5)

2
√
18𝑟2 − 2ℎ2 ≤ 2𝜏 ≤ 2(

√
𝑟 + ℎ + 2

√
𝑟)
√
3𝑟 − ℎ . (6)
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Figure 8: Admissible right-angled triangles

The case of right-angled admissible triangles, corresponding to the condition ℎ = 𝑟

is indeed trivial. The admissible triangles are all right angled triangles inscribed in the
same circle and having fixed the vertex 𝐻 of the right angle. The maximal one is the
isosceles and the minimal is degenerated to the diameter through 𝐻 (See Figure 8).



Triangles sharing their Euler circle and circumcircle 11

4 A variational aspect of central conics

The discussion so far suggests an alternative aspect to the classical view of “central” con-
ics. They are the envelopes of side-lines of an “admissible family of triangles”, which share
their Euler circle ^(𝑁, 𝑟) and circumcircle ^′(𝑂, 2𝑟). The first is the “auxiliary circle” of the
conic, point 𝑁 being the center of the conic. The second is the “circular directrix” of the
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Figure 9: Central conics as envelopes of triangles sharing Euler- and circum-circle

conic, point 𝑂 being one focus, the other focus coinciding with the common orthocenter
𝐻 of all these triangles. Figure 9 shows the particular case of “rectangular hyperbolas”,
characterized by the relation ℎ = |𝑁𝑂 | =

√
2𝑟. By the discussion below and especially

from equation (11) follows that all these triangles have a constant sum of squares of side-
lengths 𝑎2 + 𝑏2 + 𝑐2, which in the case of rectangular hyperbolas of figure 9 is easily seen
to satisfy the relation

𝑟2 =
1

28
(𝑎2 + 𝑏2 + 𝑐2). (7)

More generally, every central conic will determine such a maximal in area isosceles trian-
gle 𝐴𝐵𝐶, whose area will bound the areas of all other triangles sharing the same Euler-,
circum-circles {^, ^′}. It will determine also an analogous to equation (7) for the sum
of squares of side-lengths. Conversely, every isosceles triangle will define a conic and
corresponding circumscribed to it triangles sharing with the isosceles its Euler-and its
circum-circle. All these triangles will be obtuse if the apex-angle of the isosceles is obtuse
and correspondingly acute-angled if the apex-angle is acute.

Theorem 4. The non-rectangular triangles, having given radius 𝑟 of the Euler circle and given
sum of squares of side lengths 𝑎2 + 𝑏2 + 𝑐2 = 𝑘2, are congruent to the circumscribed triangles of
a unique, up to congruence, central conic determined by {𝑟, 𝑘}.

Proof. By the preceding remarks, this reduces to showing, that there is, up to congruence,
an isosceles inscribed in a circle of radius 𝑅 = 2𝑟 with given sum of squares of side-
lengths 2𝑎2 + 𝑏2 = 𝑘2. In fact, if we fix a circle of radius 𝑅 and study the isosceli inscribed
there, we see that the basis 𝑏 and the preceding constant 𝑘, considered as functions of
the lateral side 𝑎 of the isosceles triangle, are given by the functions

𝑏(𝑎) =
𝑎

𝑅

√
4𝑅2 − 𝑎2 and 𝑘 (𝑎) =

𝑎

𝑅

√
6𝑅2 − 𝑎2.

Figure 10 shows the graph of 𝑘 (𝑎) and its relation to the varying isosceli inscribed in
the circle of radius 𝑅. The maximal value of 𝑘 is attained when the isosceles becomes an
equilateral. The variation of 𝑘 can be split into two parts.
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The first part is connected with the obtuse angled triangles, for which the basis is on the
left of the diameter at 𝐷. These isosceli are in one-to-one correspondence to the values of
𝑘. They correspond to families of obtuse-angled admissible triangles, which contain one
only isosceles. Hence for obtuse-angled triangles, the value of 𝑘 uniquely determines the
corresponding isosceles contained in the family and through it the hyperbola enveloping
the sides of all the triangles of the family.

The second part is connected with the acute-angled triangles, for which the basis is on
the right of the diameter at 𝐷. These isosceli correspond two-to-one value of 𝑘, except
the point 𝑀, which defines an equilateral. In the non exceptional case the isosceli corre-
spond to families of acute-angled admissible triangles, which contain two such members.
The maximal and the minimal one, studied in section 2. In this case, the value of 𝑘 de-
termines again a unique ellipse to which these triangles and all triangles of the family
are circumscribed. Notice that the maximal value of 𝑘, obtained at 𝑀, is 3𝑅 and corre-
sponds to the family of congruent equilaterals inscribed in the given circle, for which the
ellipse coincides with their common Euler circle coinciding also with their incircle. □
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Figure 11: Constructing members of an admissible family of triangles

Figure 11 illustrates the construction of members of an admissible family created by
the isoceles contained in it. The isoceles defines the conic and for points 𝑃, whose tangent
𝑡𝑃 intersects the circumircle of the isosceles, the intersections {𝐴, 𝐵} define two vertices
of the member-triangle. The third vertex 𝐶 is one of the intersections of the circumcircle
with the perpendicular from the orthocenter 𝐻 of the isosceles to the line 𝐴𝐵. In the
case of the ellipse and acute-angled triangles, all tangents 𝑡𝑃 intersect the circumcircle,
whereas in the case of the hyperbola we have the restrictions discussed in section 2.

The two figures may be considered as a generalization of the familiar one of the equi-
lateral triangle, rotating in its cicumcircle. The role of the incircle of the equilateral over-
takes in the general case the ellipse for acute and the hyperbola for obtuse triangles.
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5 Poristic triangles

The system S of “admissible”, in our context, triangles is traditionally called “poristic”
in a wider sense. In fact, families of triangles sharing the same Euler circle and same
circumcircle have been already considered by Weaver [17] and constitute a variation of
the original idea of “poristic triangles”. Under this term discussed Gallatly initially in
his book [4, p.23] triangles sharing the same incircle and same circumcircle. There are
since then several articles discussing various aspects of such families of triangles. Among
others, of some importance for our subject are the articles by Odehnal [9], Oxman [10]
and Radic [14]. In this section we establish a connection with the original idea of poristic
triangles formulated as a theorem.

Theorem 5. Under the definitions and conventions adopted so far, the system S of acute-angled
“admissible triangles”, which share the same Euler circle ^ and the same circumcircle ^′, are the
“intouch” triangles of a system S′ of poristic triangles, coinciding with the tangential triangles
of the former.
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Figure 12: Relation of admissible 𝐴𝐵𝐶 to “poristic” 𝐴′𝐵′𝐶′

Proof. The proof results by considering the tangential triangle 𝐴′𝐵′𝐶′ (See Figure 12) of
𝐴𝐵𝐶, which becomes then the “intouch” triangle of the former. Thus, it suffices to show
that the circumcircle ^′′ of 𝐴′𝐵′𝐶′ is the same for all admissible triangles. For this we
have to show that the center of ^′′ is a fixed point of the fixed Euler line Y of 𝐴𝐵𝐶 and its
radius is also constant. The first claim is a simple fact resulting from general well known
properties of triangle centers, to be found in Kimberling’s encyclopedia [7], [6]. In this
list the center of the tangential triangle of 𝐴𝐵𝐶 is denoted by 𝑋 (26) and seen to be a
point of the Euler line Y. Expressed in barycentric coordinates or “barycentrics” ([12]) it
has the representation

𝑋 (26) =

(
𝑎2(𝑏2 cos(2𝐵) + 𝑐2 cos(2𝐶) − 𝑎2 cos(2𝐴)) : . . . : . . .

)
(8)

= (𝐸 + 4𝐹) ( 𝑆2 , 𝑆2 , 𝑆2 ) − (3𝐸 + 4𝐹) ( 𝑆𝐵𝑆𝐶 , 𝑆𝐶𝑆𝐴 , 𝑆𝐴𝑆𝐵 ) (9)

where 𝐸 = 4𝑅2, 𝐹 = 𝑆𝜔 − 4𝑅2. (10)

Here the first row expresses 𝑋 (26) in terms of the side-lengths {𝑎, 𝑏, 𝑐} and its angles
{𝐴, 𝐵, 𝐶}. The dots must be replaced with the same expression with cyclically permuted
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letter labels. The second row represents 𝑋 (26) as a linear combination of the barycentrics
of the centroid 𝐺 (𝑆2 : 𝑆2 : 𝑆2) and the orthocenter 𝐻 (𝑆𝐵𝑆𝐶 : 𝑆𝐶𝑆𝐴 : 𝑆𝐴𝑆𝐵) , the coeffi-
cients in the combination (9) being known as “Shinagawa coefficients” ([7]) of points on the
Euler line. Here {𝑆𝐴, 𝑆𝐵, 𝑆𝐶} are the “Conway triangle symbols” of 𝐴𝐵𝐶, expressed by

𝑆𝐴 =
1

2
(𝑏2 + 𝑐2 − 𝑎2) , 𝑆𝐵 =

1

2
(𝑐2 + 𝑎2 − 𝑏2) , 𝑆𝐶 =

1

2
(𝑎2 + 𝑏2 − 𝑐2) ,

and reviewed in [12]. The symbol 𝑆 represents twice the area of 𝐴𝐵𝐶 and

𝑆𝜔 = 𝑆 cot(𝜔) =
1

2
(𝑎2 + 𝑏2 + 𝑐2),

with 𝜔 representing the “Brocard angle” of the triangle 𝐴𝐵𝐶 ([3, p.274], [18, p.84], [12]).
The symbols {𝐸, 𝐹} appearing in the aforementioned linear combination are in our case
constant i.e. the same for all admissible triangles 𝐴𝐵𝐶. This because the circumradius
𝑅 = 2𝑟 is the constant radius of the circumcircle of 𝐴𝐵𝐶 and 𝑆𝜔 enters the expression
([3, p.102]) of

𝑂𝐻2 = 9𝑅2 − 2𝑆𝜔 , (11)

showing its constancy, since {𝑂, 𝐻} and 𝑅 are the same for all admissible triangles 𝐴𝐵𝐶.
As explained in [8], writing a triangle center as a linear combination 𝑋 = 𝑚𝐺 + 𝑛𝐻

with Shinagawa coefficients {𝑚, 𝑛}, implies that point 𝑋 is the image 𝑋 = ℎ𝐺,𝑡 (𝐻) of the
homothety ℎ𝐺,𝑡 with center 𝐺 and homothety-ratio

𝑡 =
𝑛

3𝑚 + 𝑛 . (12)

This, in the case of the linear combination (9), implies that the homothety ratio is constant:

𝑡 = − 3𝐸 + 4𝐹

3(𝐸 + 4𝐹) − (3𝐸 + 4𝐹) = −3𝐸 + 4𝐹

8𝐹
.

Hence the location of 𝑋 (26) is the same for all triangles 𝐴𝐵𝐶 of the system S.
Analogous reasoning shows the constancy of the “homothety center” 𝑋 (25) of the tan-

gential triangle 𝐴′𝐵′𝐶′ to the orthic triangle 𝐴′′𝐵′′𝐶′′ of 𝐴𝐵𝐶 :

𝑋 (25) =

(
𝑎2𝑆𝐵𝑆𝐶 : . . . : . . .

)
(13)

= 𝐹 ( 𝑆2 , 𝑆2 , 𝑆2 ) − (𝐸 + 𝐹) ( 𝑆𝐵𝑆𝐶 , 𝑆𝐶𝑆𝐴 , 𝑆𝐴𝑆𝐵 ) . (14)

The constancy of the radius 𝑅′′ of ^′′ follows from the known ([3, p.98]) homothety
ratio 𝑟/𝑅′′ of the orthic triangle 𝐴′′𝐵′′𝐶′′ to the tangential 𝐴′𝐵′𝐶′, which for the case of
acute-angled 𝐴𝐵𝐶 is given by ([5, p.259], [15]):

𝑟

𝑅′′ = 2 cos(𝐴) cos(𝐵) cos(𝐶) =
𝑆𝜔 − 4𝑅2

2𝑅2
=

1

4𝑅2
(𝑅2 −𝑂𝐻2). (15)

□

Remark 2. It must be stressed the fact, that the theorem deals only with the case of acute-
angled admissible triangles 𝐴𝐵𝐶. Indeed, all intouch triangles are acute, since their an-
gles are of measure {𝛼 = 𝜋−𝛼′

2 }, where {𝛼′} are the angle measures of the correspond-
ing triangle 𝐴′𝐵′𝐶′, of which 𝐴𝐵𝐶 is the intouch one (See Figure 13-I). In contrary, all
the “extouch” triangles are obtuse-angled (See Figure 13-II). Thus, if we have a family
of admissible obtuse-angled triangles {𝐴𝐵𝐶} and want a corresponding relation for this
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Figure 13: “Intouch” triangles: acute-angled, “Extouch” : obtuse-angled

case, we have to consider a variation of the original idea of poristic, concerning trian-
gles with common circumcircle and one “excircle” of them. In the sequel we stick to the
acute-angled case, leaving the variation of the “poristic” notion to pairs of (circumcircle ,
excircle) and corresponding relations to admissible families to be the subject of a future
discussion.

Remark 3. Regarding the three circles {^, ^′, ^′′} of figure 12, it is known ([5, p.200]) that
they belong to the same “coaxal system” ([3, p. 201]). Their common radical axis [ is the
“orthic axis” of 𝐴𝐵𝐶, i.e. the trilinear polar of the orthocenter 𝐻 w.r. to 𝐴𝐵𝐶, which also
coincides with the polar of 𝑋 (25) w.r. to the circumcircle ^′ of 𝐴𝐵𝐶.

Remark 4. The system S of acute-angled admissible triangles being identical with the
set of intouch triangles of a poristic system S′ and the Euler line of S coinciding with
the “incenter-circumcenter-line” of S′, we can use S for the detection of fixed triangle-
centers for all triangles of S′. Especially for the triangle-centers that lie on the Euler line
Y of S and for which we know their relation w.r. to 𝐴𝐵𝐶 and 𝐴′𝐵′𝐶′. For example
𝑋 (25) w.r. to 𝐴𝐵𝐶 is 𝑋 (57) of 𝐴′𝐵′𝐶′ when 𝐴𝐵𝐶 is acute-angled, hence a fixed point
of the poristic system S′.

OG
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Figure 14: Geometric locus of symmedian points

Such correspondences between triangle centers w.r. to 𝐴𝐵𝐶 and 𝐴′𝐵′𝐶′, could be
used also for the detection of orbits of variable triangle centers of either system {S,S′}.
For example, the “symmedian point” 𝐾 = 𝑋 (6) of an acute-angled triangle 𝐴𝐵𝐶 is the
“Gergonne point” 𝑋 (7) of the corresponding tangential 𝐴′𝐵′𝐶′, which is known ([9], [2],
[4, p.23]) to describe a circle coaxal with {^′, ^′′}, as 𝐴′𝐵′𝐶′ varies in S′. Hence the
symmedian point 𝐾 describes this same circle as 𝐴𝐵𝐶 varies in S. Figure 14 gives a
visual hint for the location of the circle described by 𝐾 for acute angled triangles. It
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has diameter on Y with ends the symmedian points {𝐾1, 𝐾2} of the corresponding maxi-
mal/minimal admissible triangles {𝜏1, 𝜏2}.

Remark 5. The determination of maximal/minimal area/perimeter member-triangles in
the poristic system S′ has been handled in [14] with results similar to those of section
2. The maximal/minimal in area/perimeter triangles, also in this case are the isosceli
members of S′, having line Y for axis of symmetry.

6 Homography between two circles

Now, having a concept of the relation between admissible and poristic families of trian-
gles, we turn to the study of a homography between two circles, having in mind the in-
circle and the circumcircle of an acute-angled triangle. Indeed, we’ll adapt to our case the
following more general homography, defined by means of a pair of circles {^(𝑟), ^′(𝑟 ′)}
and a line Z intersecting each circle in two different points as in the figure 15. In this

O

CD B A

K

M

N

L

κ

κ'

ε

ζ

Χ

Y

Figure 15: Homography mapping ^ to ^′

Y is the line of centers and {(𝐴, 𝐵), (𝐶, 𝐷)} are pairs of diametral points of {^′, ^}. By
the “fundamental theorem” of projective geometry ([16, p.96]), there is a unique projective
transformation (homography) 𝑓 mapping:

𝐾
𝑓
↦→ 𝑁 , 𝐿

𝑓
↦→ 𝑀 , 𝐶

𝑓
↦→ 𝐵 , 𝐷

𝑓
↦→ 𝐴 .

Theorem 6. With the notation and conventions adopted above, the homography 𝑓 maps the
circle ^ onto the circle ^′.

Proof. We use the cartesian coordinate system with axes {Y, Z}, representing the points by
their associated homogeneous coordinates

𝐾 (0, 𝑘, 1) , 𝑀 (0, 𝑚, 1) , 𝑁 (0,−𝑚, 1) , 𝐿(0,−𝑘, 1) , 𝐶 (𝑐, 0, 1) , 𝐷 (𝑑, 0, 1) , 𝐵(𝑏, 0, 1) , 𝐴(𝑎, 0, 1) ,

which satisfy the conditions

𝑎 · 𝑏 = −𝑚2 , 𝑐 · 𝑑 = −𝑘2 . (16)

The homography is represented in the homogeneous system by a matrix A, defined
uniquely up to a non-zero multiplicative constand by the formal conditions

A · (𝐾𝐿𝐶) = (𝑁𝑀𝐵) ©«
𝑢 0 0
0 𝑣 0
0 0 𝑤

ª®¬ and A · 𝐷 = 𝑠 · 𝐴. (17)
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Here {(𝐾𝐿𝐶), (𝑁𝑀𝐵)} are the matrices with column-vectors the corresponding to the la-
bels coordinates and {𝑢, 𝑣, 𝑤, 𝑠} are factors to be determined. Inverting (𝐾𝐿𝐶) we obtain,
up to a multiplicative factor, the matrix

A = (𝑁𝑀𝐵) ©«
𝑢 0 0
0 𝑣 0
0 0 𝑤

ª®¬ (𝐾𝐿𝐶)−1 =
©«

2𝑏𝑘𝑤 0 0
𝑘𝑚(𝑢 − 𝑣) −𝑐𝑚(𝑢 + 𝑣) 𝑐𝑘𝑚(𝑣 − 𝑢)

𝑘 (2𝑤 − 𝑢 − 𝑣) 𝑐(𝑢 − 𝑣) 𝑐𝑘 (𝑢 + 𝑣)

ª®¬ .
Using the last of equations (17) we see that the factors involved are, up to a common
multiplicative constant,

𝑢 = 𝑣 =
𝑏 − 𝑎
𝑐 − 𝑑 and 𝑤 =

𝑎

𝑑
,

leading finally to the, up to multiplicative factor expression of the matrix

A =
©«
𝑎𝑏(𝑐 − 𝑑) 0 0

0 𝑘𝑚(𝑏 − 𝑎) 0
𝑎𝑐 − 𝑏𝑑 0 𝑘2(𝑎 − 𝑏)

ª®¬ . (18)

The proof results by showing that

©«
𝑥

𝑦

𝑧

ª®¬ ∈ ^ ⇒ A · ©«
𝑥

𝑦

𝑧

ª®¬ =
©«
𝑥′

𝑦′

𝑧′

ª®¬ ∈ ^′ . (19)

In fact, taking into account equations (16), we see that the circles are represented by the
equations

^ : 𝑥2 + 𝑦2 − (𝑐 + 𝑑)𝑥𝑧 − 𝑘2𝑧2 = 0 , ^′ : 𝑥′2 + 𝑦′2 − (𝑎 + 𝑏)𝑥′𝑧′ − 𝑚2𝑧′2 = 0 .

Replacing in the second equation the variables {𝑥′, 𝑦′, 𝑧′} with their expressions given by
equations (19) and doing some calculation, we find indeed that

𝑥′2 + 𝑦′2 − (𝑎 + 𝑏)𝑥′𝑧′ − 𝑚2𝑧′2 = [(𝑏 − 𝑎)2𝑚2𝑘2] · [𝑥2 + 𝑦2 − (𝑑 + 𝑐)𝑥𝑧 − 𝑘2𝑧2] = 0 ,

which finishes the proof. □

In the following remarks the equality between tripples of homogeneous coordinates,
occasionally denoted by “ � ”, is considered up to non-zero multiplicative factors, since
(𝑥, 𝑦, 𝑧) and (𝑡𝑥, 𝑡𝑦, 𝑡𝑧) for 𝑡 ≠ 0 represent the same point in the projective plane. By its
definition, the homography 𝑓 leaves invariant the lines {Y, Z} and fixes their intersection
point 𝑂. More generally, from its expression through the matrix A, we can easily detect
its behavior on lines parallel to the axes. In fact, for points 𝑌 (0, 𝑦, 𝑧) of the 𝑦−axis, their
image is 𝑓 (𝑌 ) = (0, 𝑚𝑦,−𝑘𝑧). Hence the point at infinity (0, 1, 0) of this line remains fixed
under 𝑓 . This implies that a line Z ′ parallel to Z will map under 𝑓 to a line Z ′′ also
parallel to Z .

The behavior of 𝑓 along the 𝑥−axis is also easily seen to be described by the corre-
spondence

𝑓 (𝑋 (𝑥, 0, 𝑧)) = 𝑋 ′ = ( 𝑎𝑏(𝑐 − 𝑑)𝑥 , 0 , (𝑎𝑐 − 𝑏𝑑)𝑥 − 𝑘2(𝑏 − 𝑎)𝑧 ) ,

which turning to the cartesian inhomogeneous coordinates 𝑡 = 𝑥/𝑧 leads to the represen-
tation by the “fractional transformation”

𝑡′ = 𝑔(𝑡) =
𝑎𝑏(𝑐 − 𝑑)𝑡

(𝑎𝑐 − 𝑑𝑏)𝑡 + 𝑘2(𝑎 − 𝑏) . (20)
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From here we see that, besides the origin 𝑂 corresponding to 𝑡 = 0, the second fixed
point 𝑃 on Y corresponds to

𝑡0 = 𝑔(𝑡0) ⇔ 𝑡0 =
𝑎𝑏(𝑐 − 𝑑) + 𝑐𝑑 (𝑎 − 𝑏)

𝑎𝑐 − 𝑏𝑑 ,

defining the line [ at 𝑃, orthogonal to Y. This is the third invariant line of the trans-
formation 𝑓 (See Figure 16) and {𝑂, 𝑃} are two fixed points of 𝑓 , which together with

O C

D B

A

K

M

N

L

κ
κ'

ε

ζ

P

η

Χ

Υ

Ζ
t

Χ
t

ξ
t

P
1

P
0

ξ
1

ξ
0

y

y'

Figure 16: Some characteristic lines of the homography 𝑓

the point at infinity of Z determine the three fixed points of 𝑓 . Two other characteris-
tic lines of 𝑓 are the parallels {b0, b1} to Z defined by the points {𝑃0, 𝑃1} on the 𝑥−axis
corresponding to the values of 𝑡 :

𝑡0 =
𝑎𝑏(𝑐 − 𝑑)
𝑎𝑐 − 𝑏𝑑 and 𝑡1 =

𝑐𝑑 (𝑎 − 𝑏)
𝑎𝑐 − 𝑏𝑑 .

Line b0 is the image under 𝑓 of the line at infinity and line b1 is the line send by 𝑓 to
infinity. It is readily seen that

|𝑂𝑃0 | = |𝑃1𝑃 | .

Point 𝑃0 is the image under 𝑓 of the point at infinity of Y. This implies that the parallels
to Y, meeting this line at its point at infinity, have their images under 𝑓 pass through
𝑃0. More general, the images via 𝑓 or parallels to a given direction pass through a point
on line b0.

The behavior of 𝑓 along an arbitrary parallel b𝑡 to Z is characterized by the existence
of a corresponding point 𝑍𝑡 ∈ Y, such that for all 𝑋 ∈ b𝑡 the line joining {𝑋, 𝑓 (𝑋)} passes
through 𝑍𝑡 . In fact, if b𝑡 is characterized by the constant 𝑡 = 𝑥/𝑧, then the generic point
on b𝑡 is represented by 𝑋 (𝑡, 𝑦, 1) with variable 𝑦 and 𝑓 (𝑋) = A𝑋. By the preceding
remarks, we know that 𝑓 (b𝑡 ) is a line parallel to b𝑡 . Its points are described by

𝑌 = A𝑋 = ( (𝑎𝑏(𝑐 − 𝑑)𝑡 , 𝑘𝑚(𝑏 − 𝑎)𝑦 , (𝑎𝑐 − 𝑏𝑑)𝑡 + 𝑘2(𝑎 − 𝑏) )

� 𝑌 (𝑥′, 𝑦′, 1) = ( 𝑎𝑏(𝑐 − 𝑑)𝑡
(𝑎𝑐 − 𝑏𝑑)𝑡 + 𝑘2(𝑎 − 𝑏) ,

𝑘𝑚(𝑏 − 𝑎)𝑦
(𝑎𝑐 − 𝑏𝑑)𝑡 + 𝑘2(𝑎 − 𝑏) , 1 ) .

In this the first coordinate 𝑥′ , recognized in equation (20), determines the projection of
𝑌 on Y and the second coordinate produces the depending on 𝑡 only ratio

𝑦′

𝑦
=

𝑘𝑚(𝑏 − 𝑎)
(𝑎𝑐 − 𝑏𝑑)𝑡 + 𝑘2(𝑎 − 𝑏) ,

proving the constancy of 𝑍𝑡 on Y.
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7 On the Euler condition

The “Euler condition” known as “Euler’s theorem” ([3, p.85])

𝑂𝐼2 = 𝑅(𝑅 − 2𝜌),

relates the distance of centers of two circles {^(𝑂, 𝑅), ^′(𝐼, 𝜌)} to their radii. It is the
necessary and sufficient condition for the existence of triangles having the small circle
(^′) as incircle and the big one (^) as circumcircle. To be short, I call two such circles
“Euler conditioned”. Figure 17 shows two such circles and a poristic triangle. At this stage
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Figure 17: Triangle of a poristic system

we are interested in two correspondences noticed there. The first is the homography
𝑌 = 𝑓 (𝑍) defined by the two circles {^, ^′} and the line Z in the way explained in the
preceding section. The second correspondence 𝑋 = 𝑔(𝑍) associates to the vertex 𝑍 of
the poristic triangle the contact point 𝑋 of the opposite side with the incircle. In this
section we deal mainly with two properties which I formulate as theorems.

Theorem 7. The map 𝑋 = 𝑔(𝑍) is a homography of the circumcircle ^ onto the incircle ^′ of
the Euler conditioned system {^, ^′}.

Theorem 8. The homographies { 𝑓 , 𝑔} of an Euler conditioned system of circles {^, ^′} coincide,
precisely when the line Z passes through the inner limit point 𝐹 of the coaxal system of circles
defined by {^, ^′}.

Proof. (theorem 7) We use the cartesian coordinate system with the line Y as 𝑥−axis and
the orthogonal to it at the center 𝐼 of ^′ as 𝑦−axis. Since the property is invariant by
similarities, we may assume that the small circle ^′ has radius 𝜌 = 1 and the circle ^ has
its center at the point (𝑎, 0), so that the Euler condition becomes

𝑎2 = 𝑅2 − 2𝑅 . (21)

We proceed by constructing inversely 𝑍 ∈ ^ from 𝑋 ∈ ^′ and thus showing that the in-
verse mapping of 𝑔 is a homography. For this we follow the natural method to define
𝑍 by first locating the intersection points {𝑋1, 𝑋2} with ^ of the tangent 𝑡𝑋 at 𝑋 (𝑥, 𝑦)
and determining 𝑍 as intersection point of the two lines {𝑋1𝑌1, 𝑋2𝑌2}, where {𝑌1, 𝑌2} are
the reflections of 𝑋 respectively on lines {𝐼𝑋1, 𝐼𝑋2}. Since our circles are assumed Euler
conditioned, we know that the such constructed point 𝑍 is on the circle ^ and coincides
with 𝑔−1(𝑋). We use throughout vectors denoted by the same letters as the correspond-
ing points they represent. The symbol 𝐽𝑋 = (−𝑦, 𝑥) denotes the +𝜋/2 rotation about the
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origin 𝐼, satisfying 𝐽2 = −𝑒, where 𝑒 the identity transformation and, being an isometry,
preserving also the inner product ⟨𝐽𝑋, 𝐽𝑌⟩ = ⟨𝑋,𝑌⟩. The points {𝑋1, 𝑋2} may be assumed
in the form

𝑋1 = 𝑋 + _1𝐽𝑋, 𝑋2 = 𝑋 + _2𝐽𝑋,

and using equation (21), the power of 𝑋 w.r. to ^ and the fact 𝑥2 + 𝑦2 = 1, we find that

(_1 + _2) = −2𝑎𝑦 and _1_2 = 1 − 2𝑎𝑥 − 2𝑅 .

A standard calculation of the reflected 𝑋 on lines {𝐼𝑋1, 𝐼𝑋2} gives

𝑌𝑖 = `𝑖𝑋 + a𝑖𝐽𝑋 , with `𝑖 =
1 − _2

𝑖

1 + _2
𝑖

, a𝑖 =
2_𝑖

1 + _2
𝑖

for 𝑖 = 1, 2 .

Point 𝑍 considered as intersection of the lines 𝑍 = 𝑋1𝑌1 ∩ 𝑋2𝑌2 , may be expressed in
the form 𝑍 = (1 − 𝑡)𝑋1 + 𝑡𝑌1 = (1 − 𝑡′)𝑋2 + 𝑡′𝑌2 . It is then determined by

𝑍 = 𝑋1 + 𝑡 (𝑌1 − 𝑋1) with 𝑡 =
⟨ 𝑋2 − 𝑋1 , 𝐽 (𝑌2 − 𝑋2) ⟩
⟨ 𝑌1 − 𝑋1 , 𝐽 (𝑌2 − 𝑋2) ⟩

and

𝑋2 − 𝑋1 = (_2 − _1)𝐽𝑋 , 𝑌𝑖 − 𝑋𝑖 = (`𝑖 − 1)𝑋 + (a𝑖 − _𝑖)𝐽𝑋 , for 𝑖 = 1, 2 ⇒

𝑡 =
(_2 − _1) (`2 − 1)

(a1 − _1) (`2 − 1) − (a2 − _2) (`1 − 1) =
_2(1 + _21)
_1(1 + _1_2)

⇒

𝑍 =
1 − _1_2
1 + _1_2

𝑋 + _1 + _2
1 + _1_2

𝐽𝑋 .

Expressing 𝑍 in homogeneous coordinates, and taking into account 𝑥2 + 𝑦2 = 1 , we get

𝑧1 = (1 − _1_2)𝑥 − (_1 + _2)𝑦 = 2(𝑎𝑥 + 𝑅)𝑥 − (−2𝑎𝑦)𝑦 = 2𝑎 + 2𝑅𝑥,

𝑧2 = (1 − _1_2)𝑦 + (_1 + _2)𝑥 = 2(𝑎𝑥 + 𝑅)𝑦 − 2𝑎𝑦𝑥 = 2𝑅𝑦,

𝑧3 = 1 + _1_2 = 2(1 − 𝑎𝑥 − 𝑅).

This, homogenizing the right sides and dividing by 2 , gives the representation of 𝑔−1 in
homogeneous coordinates:

𝑧1 = 𝑅𝑥 + 𝑎𝑧 ,

𝑧2 = 𝑅𝑦 ,

𝑧3 = −𝑎𝑥 + (1 − 𝑅)𝑧,

proving it to be indeed a homography, as claimed. □

Proof. (theorem 8) I recall the classical result ([16, I,p.213]), according to which a homog-
raphy ℎ : ^ → ^′ between the points of two conics is completely and uniquely defined
by prescribing the images {𝐴′, 𝐵′, 𝐶′ ∈ ^′} of three points {𝐴, 𝐵, 𝐶 ∈ ^}. Now it is easily
seen, on the ground of their proper definition, that all homographies { 𝑓 }, depending on
the location of the line Z , coincide with 𝑔 at the two diametral points {𝑍1, 𝑍2} = ^ ∩ Y of
^ on line Y. The corresponding poristic triangles are then the two isosceli with the max-
imal/minimal area/perimeter. Thus, in order to prove the stated coincidence of the two
homographies, it suffices to examine, when they are coincident at a single third point.
This can be conveniently selected to be the point 𝑁 ∈ ^ (See Figure 17), whose image per
definition is 𝑓 −1(𝑁) = 𝐾. Considering the system and the settings used in the preceding
proof, 𝑔−1 can be described by the homography found there:

𝑧1 =
𝑅𝑥 + 𝑎

−𝑎𝑥 + (1 − 𝑅) , 𝑧2 =
𝑅𝑦

−𝑎𝑥 + (1 − 𝑅) .
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Considering the coordinates {𝐾 (𝑥, 𝑘), 𝑁 (𝑥, 𝑛)}, the coincidence condition of the images
{𝑔−1(𝑁) = 𝑓 −1(𝑁) = 𝐾} is equivalent with

𝑥 =
𝑅𝑥 + 𝑎

−𝑎𝑥 + (1 − 𝑅) , and 𝑘 =
𝑅𝑛

−𝑎𝑥 + (1 − 𝑅) . (22)

The first of these implies that 𝑥 must be equal to:

𝑥 =
1

2𝑎
(1 − 2𝑅 +

√
4𝑅 + 1) , (23)

which is the coordinate of the point 𝐹 as claimed. Notice that this is one of the intersec-
tion points {𝐹, 𝐹′} of the minimal circle _ (See Figure 17) of the orthogonal pencil to the
pencil of circles generated by {^, ^′}. For the calculation of {𝐹, 𝐹′} in the context of circle
pencils one can apply the formula ([13]) for their coordinates

𝑥𝐹 , 𝑥𝐹′ =
1

𝑑 + 𝑐 − 𝑎 − 𝑏

(
𝑐𝑑 − 𝑎𝑏 ±

√︁
(𝑐 − 𝑎) (𝑐 − 𝑏) (𝑑 − 𝑎) (𝑑 − 𝑏)

)
,

the meaning of the constants being that of figure 15 discussed in section 6. □

Corollary 3. Poristic systems of triangles S correspond bijectively to admissible systems S′ of
acute-angled triangles. Two corresponding systems {S,S′} share the same Euler conditioned pair
of circles {^, ^′}. For the admissible system S′ , {^, ^′} are respectively the common circumcircle
of the tangential triangles of the triangles 𝜏′ ∈ S′ and ^′ is the common circumcircle of all
𝜏′ ∈ S′. For the poristic system {^, ^′} are the common circum- and in-circle of all triangles
𝜏 ∈ S. There is also a homography 𝑔 : ^ → ^′ mapping each triangle 𝜏 ∈ S inscribed in ^ to
its intouch triangle 𝑔(𝜏) = 𝜏′ ∈ S′.

8 The Euler homography

From the analyzed properties of the homography 𝑔 , defined in the preceding section, it
seems reasonable to call it “Euler homography” of the Euler conditioned circles {^, ^′}. In
this section we explore further properties of 𝑔 and relate them to properties of the two
systems of triangles: the poristic S and the admissible S′. In doing this we use the
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notation and conventions of the preceding section about the coordinate system with axes
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{Y, \}, the circles ^(𝑂, 𝑅) and ^′(𝐼, 1) (See Figure 18) and the distance |𝐼𝑂 | = 𝑎, so that
the Euler condition has the form of equation (21). We shall also apply the transformation
𝑔−1, whose matrix representation w.r. to the aforementioned base has been found to be,
up to non-zero factor:

𝑔−1 �
©«
𝑅 0 𝑎

0 𝑅 0
−𝑎 0 1 − 𝑅

ª®¬ with inverse 𝑔 �
©«
1 − 𝑅 0 −𝑎
0 −1 0
𝑎 0 𝑅

ª®¬ . (24)

Since by theorem 8 the transformation 𝑔 is a special case of the homographies studied in
section 6, the properties discussed there apply also in the present case. From the first of
the equations (22), which actually determine the fixed points of 𝑔−1, we deduce that the
points {𝐹, 𝐹′} with coordinates

𝑥𝐹 , 𝑥𝐹′ =
1

2𝑎
(1 − 2𝑅 ±

√
4𝑅 + 1) , (25)

are fixed points of 𝑔. They are the diametral points on Y of the minimal circle _(𝐹0)
among the orthogonal circles to {^, ^′}. The third fixed point of 𝑔 is the point at infinity
𝐹∞ along the 𝑦−direction, so that 𝐹𝐹′𝐹∞ is the “invariant triangle” of 𝑔 with vertices the
fixed points and side-lines the invariant lines of 𝑔.

From the representations with matrices (24) we deduce further, that

𝑥′ =
𝑅𝑥 + 𝑎

𝑎𝑥 + 𝑅 − 1
and its inverse 𝑥 =

(1 − 𝑅)𝑥′ − 𝑎
𝑎𝑥 + 𝑅 , (26)

represent the restrictions of {𝑔−1, 𝑔} on the line Y. From this we see that 𝑥0 = (1 − 𝑅)/𝑎
and 𝑥1 = −𝑅/𝑎 are the points send to infinity by 𝑔−1 resp. 𝑔, lying symmetrically w.r. to
𝐹0. We deduce, that the lines {b0, b1} orthogonal to Y at these points are respectively, the
image via 𝑔 of the line at infinity, and the line send to infinity by 𝑔. By the discussion in
section 5 we know that the line Z0, orthogonal to Y at the center 𝐹0 of the circle _, is the
“orthic axis” of the triangle 𝜏′ = 𝐴′𝐵′𝐶′, i.e. the trilinear polar of the orthocenter 𝐻 (𝜏′)
w.r. to triangle 𝜏′ coinciding also with the polar of 𝑋 (25) (𝜏′) w.r. to ^′. As we noticed
already in section 5, 𝐻 (𝜏′) coincides also with the triangle center 𝑋 (65) (𝜏).

Theorem 9. The homography 𝑔 maps the incenter 𝐼 of 𝜏 = 𝐴𝐵𝐶 to the orthocenter 𝐻 of the
intouch triangle 𝜏′ = 𝐴′𝐵′𝐶′ and the orthocenter 𝐻 to the Euler-circle center 𝑁 of 𝜏′.

Proof. Since Y is invariant under 𝑔, we can use the second of the fractional transformations
of equations (26), which applied to 𝐼 (0, 0) gives for the coordinate of

𝐻 : 𝑥𝐻 = −𝑎/𝑅 = −
√
𝑅2 − 2𝑅/𝑅 = −

√︂
1 − 2

𝑅
.

But this is precisely the signed distance 𝐻𝐼 computed by formula (15) involving there the
data {𝑟, 𝑅, 𝑅′′}, which in our configuration are correspondingly {1/2, 1, 𝑅}. The second
claim follows by applying the same fractional transformation to the coordinate −𝑎/𝑅 of
𝐻 giving the coordinate −𝑎/(2𝑅) representing the middle of 𝐼𝐻, which is indeed the
Euler center 𝑁 of 𝜏′. □

‘

Theorem 10. The lines {b1, b0} are respectively the polars w.r. to ^′ of the points {𝐻, 𝑋 (24)}
relative to 𝜏′.
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Proof. For this it suffices to show that the coordinates {𝑥1, 𝑥0} of the corresponding inter-
sections {b1 ∩ Y, b0 ∩ Y} are correspondingly inverse w.r. to ^′ of the coordinates {𝑥ℎ, 𝑥24}
of {𝐻, 𝑋 (24)}. For 𝐻 this is immediately seen from the previous computations, which
imply indeed that 𝑥1 · 𝑥𝐻 = 1. For 𝑋 (24) this can be seen by using the Shinagawa coef-
ficients {2𝐹, −𝐸 − 2𝐹} of 𝑋 (24) ([7]) and doing a standard computation, as we did in
section 5, now considering the circumcircle ^′(𝐼, 1) and the circumcircle ^(0, 𝑅) of the
tangential triangle:

𝑥𝐻 = −
√︂
1 − 2

𝑅
⇒ 𝐼𝐻2 = 1 − 2

𝑅
= 9 − 2𝑆𝜔 ⇒

𝑆𝜔 =
1

𝑅
+ 4 ⇒ 𝐸 = 4 and 𝐹 =

1

𝑅
⇒

𝑚 = 2𝐹 =
2

𝑅
, 𝑛 = −𝐸 − 2𝐹 = −4 − 2

𝑅
, ⇒ 𝑡 =

𝑛

3𝑚 + 𝑛 =
2𝑅 + 1

2𝑅 − 2
⇒

𝑋 (24) = ℎ𝐺,𝑡 (𝐻) = 𝐺 + 𝑡 (𝐻 − 𝐺) = (1 − 𝑡)𝐺 + 𝑡𝐻 =
1

2𝑅 − 2
(−3𝐺 + (2𝑅 + 1)𝐻)

with 𝑥𝐺 = −1
3

√︂
1 − 2

𝑅
⇒ 𝑥24 =

𝑅

1 − 𝑅

√︂
1 − 2

𝑅
=

𝑎

1 − 𝑅 .

which shows that 𝑥24 · 𝑥0 = 1 . □
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Figure 19: The Euler homography maps ^′ to `

Theorem 11. The Euler homography 𝑔 maps the circumcircle ^′ of the triangle 𝐴′𝐵′𝐶′ to the
ellipse ` with focals the circumcenter 𝐼 and the orthocenter 𝐻 of the triangle 𝐴′𝐵′𝐶′. The
homography maps also the vertices {𝐴′, 𝐵′, 𝐶′} and the tangents there to corresponding vertices
of its intouch triangle 𝐴′′𝐵′′𝐶′′ and the corresponding tangents at these points (See Figure 19).
The focal poins {𝐼, 𝐻} of ` are correspondingly images under 𝑔 of the triangle centers {𝑋 (24), 𝐼}
of 𝐴′𝐵′𝐶′.

Proof. The first part, concerning the correspondence of triangles {𝐴′𝐵′𝐶′, 𝐴′′𝐵′′𝐶′′} un-
der 𝑔 is a consequence of the properties of homographies and the corresponding corre-
spondence of triangles {𝐴𝐵𝐶, 𝐴′𝐵′𝐶′}. The property 𝑔(𝐼) = 𝐻 was proved in theorem 9.
The property 𝑔(𝑋 (24)) = 𝐼 is immediately seen by applying the second of the fractional
transformations in equation (26) to the coordinate 𝑥24 = 𝑎

1−𝑅 of 𝑋 (24). □
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