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1 Introduction

Let ABC be a triangle, let D be a point which is different from the points {A, B,C}
and let {A′′, B ′′,C ′′} be respectively the intersections of the lines AD with BC, BD
with C A , and CD with AB (see Figure 1). Finally, let {A′, B ′,C ′} be respectively the
intersections of BC with B ′′C ′′, C A with C ′′A′′ and AB with A′′B ′′. Then, by De-
sargues’ Theorem, {A′, B ′,C ′} are collinear. Recall that Desargues’ Theorem states that
“if the lines {AA′′, BB ′′,CC ′′} intersect at a point D then the points {A′, B ′,C ′} are
collinear and vice versa”.1 With respect to the triangle ABC, the line εD through the
so-called “homologous points” {A′, B ′,C ′} is called the “trilinear polar” or “tripolar”
of the point D, and D is called the “tripole” of the line εD. An example of trilinear
polar that we use below is represented by the “Lemoine axis” of the triangle. This is the
trilinear polar of the symmedian point K of the triangle, whose traces {A′′, B ′′,C ′′} on
the sides of ABC are defined by the symmedians of the triangle. The “symmedian” AA′′

1At this point I would like to express my gratitude to the referee, whose suggestions greatly contributed to the
improvement of the presentation.

.

Die Brocard-Achse eines Dreiecks ABC verbindet die beiden Schnittpunkte der drei
Apollonius-Kreise des Dreiecks, die sogenannten isodynamischen Punkte, und verläuft
gleichzeitig durch den Umkreismittelpunkt und den Lemoine-Punkt, der auch Symme-
dianenpunkt oder Grebe-Punkt genannt wird. Die Lemoine-Gerade des Dreiecks ABC
ist dann die trilineare Polare des Lemoine-Punktes und steht senkrecht auf der Brocard-
Achse. Der Autor der vorliegenden Arbeit geht der Frage nach, ob eine analoge Konfi-
guration existiert, wenn man den Lemoine-Punkt durch einen beliebigen andern Punkt
der Ebene ersetzt und findet dabei einen geeigneten Ersatz für die Apollonius-Kreise.
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Figure 1 The trilinear polar εD of D w.r.t. ABC (Color figures online)
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Figure 2 The symmedian AN from A (Color figures online)

from A is related to the median AM of the triangle from A (see Figure 2) and is created
by reflecting AM in the bisector AE of Â. It is proved that the three symmedians from
{A, B,C} concur at a point, the “symmedian point” K of the triangle, whose tripolar
is the so-called “Lemoine axis” of the triangle (see Figure 3). The Lemoine axis is im-
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Figure 3 The “Lemoine axis” of ABC (Color figures online)

portant in our context, since in this article we study a generalization of the “Apollonian
circles” {κA(A′, |AA′|), κB(B ′, |BB ′|), κC (C ′, |CC ′|)} of the triangle ABC. The Apol-
lonian circle κA is defined as the geometric locus of points X such that the ratios of
distances X B/XC is constant and equal to AB/AC. Analogously are defined the two
other Apollonian circles. It is known that these three circles intersect pairwise at angles of
measure π/3 at the two “isodynamic points” of the triangle {I1, I2} (see Figure 4), which
lie symmetrically w.r.t. the Lemoine axis and their line, called “Brocard axis” of the tri-
angle, passes through the circumcenter O and the symmedian point K . Thus, the three
circles belong to the same “pencil of coaxal circles” of “intersecting type”. By definition,
a pencil of coaxal circles consists of a family of circles, for which there is a line ε , called
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Figure 4 The isodynamic points {I1, I2} (Color figures online)

the “radical axis” of the pencil, which is the radical axis of every pair of circles belonging
to the family. In our case this is the Brocard axis OK . The centers of the circles of the
pencil lie on a line orthogonal to the radical axis of the pencil, called “line of centers”
of the pencil, which in our case is the Lemoine axis. Trilinear polars play an important
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Figure 5 Circumcircle and Steiner ellipse (Color figures online)

role in the “geometry of the triangle” ([10], [21]) since they are closely related to the
generation of conics circumscribing the triangle, i.e., conics passing through its vertices
or conics inscribed in the triangle, i.e., tangent to its sides. Figure 5 shows two examples.
The first is the circumcircle of the triangle. It is generated as the locus of tripoles D of all
lines through the symmedian point K of the triangle. The second example is the “Steiner
ellipse” of the triangle generated by the tripoles D of all lines through the centroid G of
the triangle and having its center at G.

All the above ideas and properties are well known and, as far as elementary properties
of the triangle are concerned, two standard references are [5] and [14]. For properties of
conics circumscribing or inscribed in a triangle and their relations to tripolars a concise
exposition can be found in [21] and [10].

In this article we will define and study a new configuration (see Figure 6), generalizing that
of Apollonian circles of Figure 4, by replacing the symmedian point K with an arbitrary
point D of the plane of the triangle.
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Figure 6 The trilinear isodynamics {D1, D2} of D (Color figures online)

Definition 1. Given a triangle ABC and a point D on its plane, not contained in some
side-line of the triangle, the “trilinear pencil of D ” is defined to be a set of three cir-
cles, called “trilinear isogonal circles of D ”, belonging to a pencil of intersecting type,
intersecting pairwise at the same angle of measure π/6, and whose line of centers is the
trilinear polar εD of of D. The basic points {D1, D2} of the pencil are called “trilinear
isodynamics of D ” and their line is called the “trilinear radical of D. ”

In the following sections we show the existence of such a pencil depending from the point
D and prove, that when D coincides with the symmedian point K of ABC, then the
corresponding trilinear isodynamics of D coincide with the isodynamic points of the tri-
angle, though the trilinear isogonal circles of D do not coincide with the Apollonian
circles of the triangle. We prove also, that conversely, if the trilinear isodynamics of D
coincide with the usual isodynamics of the triangle, then point D is the symmedian point
of the triangle.

The technical side of all this relays on a known alternative to Ceva’s theorem for the
coincidence of three lines through the vertices of the triangle ABC, handled in Section 2.
In Section 3 we apply this alternative to show the existence of the trilinear isogonal circles
of D. In Section 4 we determine the geometric locus of all points {D : D ∈ ηD}, i.e., the
locus of points D , that happens to lie on their trilinear radical εD. It is a curve of fifth
degree, known as the “Stother’s quintic”. This curve (see Figure 14) passes through the
vertices, the middles of the sides, the centroid and the symmedian point K of the triangle.
Finally in Section 5 we show the coincidence of the trilinear isodynamics of K with the
traditional isodynamic points of the triangle of reference.
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2 Coincidence criterion alternative to Ceva’s one
This is a known exercise ([20, I, p. 51],[17, p. 319]) based on other exercises, appear-
ing as applications of the “Desargues’ involution theorem” for conics ([18, p. 311], [4,
p. 381]). For convenience I discuss here all the fundamental ideas involved. The core of
this subject is the “complete quadrangle”, defined by four points in general position and
the “quadrangular set”, defined by a complete quadrangle on an arbitrary line.
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Figure 7 Three pairs in involution {(A, A′), (B, B ′), (C,C ′)} (Color figures online)

The “complete quadrangle” consists of four points {P, Q, R, S} in general position, called
“vertices” and the six lines they define by two:

α = QR, β = PS, γ = PR, δ = QS, ζ = QP, η = RS,

called “sides” of the complete quadrangle. Two sides (as, f.e., {α, β} in Figure 7), not
containing the same vertex, are called “opposite”.

A complete quadrangle, with vertices {P, Q, R, S}, and an arbitrary line ε, that does not
pass through these points, define a “quadrangular set” ([6, p. 20]). This consists of three
pairs of points

{(A, A′), (B, B ′), (C,C ′)},
each pair being defined through the intersections of ε with a pair of opposite sides of the
complete quadrangle (see Figure 7).

Quadrangular sets are closely related to “involutions of points on a line”. An involution is
a transformation of the projective line ε onto itself, described in homogeneous coordinates
{x, y} and their ratio t = x/y by a rational function

t ′ = f (t) = a · t + b

c · t − a
with a2 + bc �= 0. (1)

The point of the line send by the involution to infinity and corresponding to t = a/c is
called the “center” of the involution. Two points Y = f (X) related by an involution are
called “conjugate” by f.

We recall that the “projective coordinates” on a projective line are defined by fixing three
pairwise different points {A, B,C} of it, called “basic”, to which we associate respectively
the coordinates {(1, 0), (0, 1), (1, 1)}. Every other point P of the line is then described by
a pair of numbers (x, y) �= (0, 0), defined up to non-zero multiplicative constant. Thus,
(x, y) and (kx, ky) , k �= 0, define the same point ([2, p. 45]), which is represented for-
mally as a linear combination x A + yB.
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Three fundamental properties of involutions are ([6, p. 45], [8, p. 262]), that (i) they are
completely determined by prescribing two points and their images, (ii) they preserve the
cross-ratio of four points and, as their name suggests, (iii) they are involutive { f 2 = id ⇔
f −1 = f.} By property (i), two pairs of points {(A, A′), (B, B ′)}, define a unique invo-
lution f mapping { f (A) = A′, f (B) = B ′}. In general, f (C) �= C ′. If it happens that
f (C) = C ′, then we say that the three pairs {(A, A′), (B, B ′), (C,C ′)} of collinear points
“are in involution”.

The well-known “involution theorem of Desargues” ([6, p. 46], [1, p. 145]) states, that
“The pairs {(A, A′), (B, B ′), (C,C ′)} of a quadrangular set are in involution. Conversely,
three pairs in involution on a line ε are defined as a quadrangular set of an appropriate
complete quadrangle.”

A A'=f(A)B B'=f(B)
ε

κΑ

I1

I2

C C'=f(C)

κΒ κC

Figure 8 Involutions define pencils of circles (Color figures online)

Remark 1. We can describe geometrically an involution f on a line ε by associating to a
pair of points {A, A′ = f (A)} the circle κA with diametral points {A, A′} (see Figure 8).
It turns out ([1, p. 140]), that these circles are the members of a coaxal pencil. If the pencil
is of intersecting type, as in the figure, then the involution has two imaginary fixed points.
If the pencil is of non-intersecting type, then the involution has two real fixed points.
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Figure 9 Alternative to Ceva’s theorem (Color figures online)

The next lemma formulates the alternative Ceva criterion, whose proof uses a trivial sort
of converse to Desargues’ theorem. The lemma guarantees the concurrence of three lines
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{α′, β ′, γ ′} at a point D (see Figure 9). The three lines are assumed to pass through cor-
responding vertices {A, B,C} of the triangle ABC and also assumed to intersect an ar-
bitrary but fixed line ε correspondingly at the points {A′′, B ′′,C ′′}. In addition, the four
points {A, B,C, D} are assumed to be in “general position”, i.e., no three of them be
collinear, and the line ε assumed not to pass through any of them.

Lemma 1 (Alternative to Ceva’s theorem). Under the preceding assumptions, the three
lines {α′, β ′, γ ′} concur at a point D, if and only if the pairs of points {(A′, A′′), (B ′, B ′′),
(C ′,C ′′)} are in involution.

Proof. If the lines {α′, β ′, γ ′} concur at a point D, under the assumptions of the lemma,
then by Desargues’ involution theorem applied to the complete quadrangle ABCD, the
three pairs of points are in involution. Conversely, assume that the pairs of lines {(α, α′),
(β, β ′), (γ, γ ′)} define on the line ε a triple of pairs {(A′, A′′), (B ′, B ′′), (C ′,C ′′)} in
involution w.r.t. some inolution f, and the lines {α′ = AA′′, β ′ = BB ′′} intersect at a
point D, such that {A, B,C, D} are in general position. Then, define C∗ to be the in-
tersection DC ∩ ε. By applying Desargues’ involution theorem to the resulting com-
plete quadrangle ABCD, we conclude that {(A′, A′′), (B ′, B ′′), (C ′,C∗)} are in invo-
lution w.r.t. some involution g. Since the involutions { f, g} coincide at the two pairs
{(A, A′), (B, B ′)}, they coincide everywhere. Hence C ′′ = C∗ and the line γ ′ = C ′C ′′
passes also through D. �

3 The three isogonal circles of a point

In this section we prove the existence of the isogonal pencil of three circles {κA, κB , κC }
of a point D not lying on any side-line of the triangle of reference ABC (see Figure
6). The necessary calculations involve the notion of “cross ratio” or “anharmonic ratio”
(AB,CD), defined for a quadruple of collinear points {A, B,C, D} through the ratios
of their directed segments (AB,CD) = (C A/CB) : (DA/DB) ([9, p. 86], [3, p. 22]).
The cross ratio can also be defined for a quadruple or “pencil” of lines, denoted by
A(BCDE), which pass through the point A, called “vertex”, {B,C, D, E} being points
on the respective lines. The cross ratio for such a pencil, denoted by A(BC, DE), is de-
fined by intersecting the quadruple with a line ε, not passing through the vertex A and
setting it equal to the cross ratio (B ′C ′, D′E ′) of the corresponding intersection points.
This definition relies on the theorem asserting that ([9, p. 89]), “the cross ratio of the
pencil does not depend on the particular line ε intersecting the lines of the pencil.” By
means of this, all notions relating to cross ratios of points on a line transfer to correspond-
ing notions of pencils of four lines through a point. The notion of “harmonic quadruple”
of four collinear points is characterized by the particular value (AB,CD) = −1 of their
cross ratio. Four collinear points satisfying this relation are said to form “harmonic pairs”
denoted by (A, B) ∼ (C, D). Use is also made of the symbol A = B(CD), read “ A
is harmonic conjugate to B w.r.t.” {C, D} and meaning that (A, B) ∼ (C, D). Related
to this is the notion of “harmonic pencil”, whose cross ratio is A(BC, DE) = −1, so
that every line intersects it in a harmonic quadruple. Perhaps the most prominent harmonic
pairs consist of the endpoints {B,C} of the side of a triangle ABC and the traces {D, E}
on BC (see Figure 10) of the internal and external bisectors of Â, which are diametral

paris
Sticky Note
involution
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Figure 10 Apollonian circle κA , (D, E) ∼ (B,C) (Color figures online)

points of the corresponding Apollonian circle κA of the triangle ([5, p. 15]). The resulting
pencil of lines A(BCDE) being also harmonic.

Figure 10 suggests also another important property of harmonic pairs: “the points of one
pair are inverse w.r.t. to the circle having diametral the points of the other pair.” The
term “inverse” appearing in this property means that the two points are related by an
“inversion transformation” ([9, p. 144], [17, p. 75]). Such a transformation is defined by
a fixed circle κ(O, r) and associates to each point X �= O the point Y on the line OX
such that the directed segments satisfy OX · OY = r2. Among the basic properties of
these transformations are that: (i) they map circles not passing through O to circles and
circles passsing through O to lines, (ii) they are “conformal transformations”, i.e., they
preserve the angle of two intersecting circles or lines, (iii) they are involutive, i.e., they are
coincident with their inverse transformations, satisfying f −1 = f and (iv) the “circle of
inversion” κ(O, r) intersects orthogonally every circle passing through two inverse points
{X,Y = f (X)}. In the example of Figure 10 the circle of inversion is κA, C = f (B) are
inverse points, and the circumcircle κ of ABC intersects orthogonally the circle κA.
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Figure 11 The isogonal pencil of D w.r.t. triangle ABC (Color figures online)

Figure 11 shows the configuration of the isogonal pencil of the three trilinear isogonal
circles we are going to define. From well-known properties of complete quadrangles, as
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the AB1A1C1 appearing in the figure, follows the existence of several harmonic pairs, the
most important being those contained in the tripolar εD of D :

(A′, A′′) ∼ (B ′,C ′), (B ′, B ′′) ∼ (C ′, A′), (C ′,C ′′) ∼ (A′, B ′). (2)

These involve the intersections {A′ = BC ∩ B1C1, B ′ = C A ∩ C1 A1, C ′ = AB ∩ A1B1},
coinciding with the harmonic conjugates {A′ = A1(BC), B ′ = B1(C A),C ′ = C1(AB)}
and the intersections {A′′ = AD ∩ εD , B ′′ = BD ∩ εD, C ′′ = CD ∩ εD}. Points
{A1, B1,C1} are the traces on the sides {α = BC, β = C A, γ = AB} of the cevians
{α′, β ′, γ ′} through D, defining the cevian triangle τD = A1B1C1.

The validity of the relations in (2) results by considering pencils of lines of a complete
quadrangle, known to be harmonic ([9, p. 101]), such as, f.e., the pencil of lines
A1(A′A′′BC ′) intersecting on β the harmonic pairs (B ′, B1) ∼ (A,C) and, consequently
also on εD the harmonic pairs (B ′,C ′) ∼ (A′′, A′). The next theorem, which is new and
guarantees the existence of our configuration, is a consequence of all these facts and the
following two well-known lemmata ([16, VIII,p. 35]).

Lemma 2. The three pairs {(A, A′), (B, B ′), (C,C ′)} are in involution if and only if, the
cross ratio of a quadruple of them, comprising at least one element from each pair, is equal
to the cross ratio of their conjugates.

Proof. The condition is necessary, since taking such a quadruple, {A, B,C, A′} say, its
conjugate {A′, B ′,C ′, A} results by an involutive transformation which preserves cross
ratios. Hence

(A′B ′,C ′A) = (AB,C A′).
This condition is also sufficient. To see this consider the involution g : A 
→ A′, B 
→ B ′.
It suffices to show that g(C) = C ′. Let g(C) = C ′′. Then, by the preservation of the
cross ratio

(A′B ′,C ′′ A) = (AB,C A′) = (A′B ′,C ′A),

last equation being valid per assumption. But (A′B ′,C ′′ A) = (A′B ′,C ′C) ⇒ C ′′ = C ′.
Analogous proofs can be given for all quadruples like the {A, B,C, A′} considered above.

�

Lemma 3. If the pairs {(A, A′), (B, B ′), (C,C ′)} are in involution and (B,C) ∼ (A, A′),
then also (B ′,C ′) ∼ (A, A′). Conversely, for arbitrary pairs {(A, A′), (B, B ′)} construct
the pair of harmonic conjugates {C = B(AA′),C ′ = B ′(AA′)}. Then, the pairs {(A, B ′),
(B, B ′), (C,C ′)} are in involution.

Proof. The proofs are formal applications of the rules:

first claim: (BC, AA′) = −1 ⇒ (B ′C ′, A′A) = −1.

converse: − 1 = (BC, AA′) = (B ′C ′, AA′) = (B ′C ′, A′A).

In the converse, the first two equalities are assumed and the last is a symmetry property of
the harmonic quadruple. The proof results from the last equalities, implying (BC, AA′) =
(B ′C ′, A′A), and applying Lemma 2. �
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Theorem 1. With the preceding notation and conventions, the three circles {κA, κB , κC }
on respective diameters {A′A′′, B ′B ′′,C ′C ′′} form a pencil of intersecting type and the
angles at their intersection points measure 60◦.

Proof. The fact that the circles form a pencil follows Lemma 1, guaranteeing that the pairs
{(A′A′′), (B ′B ′′), (C ′C ′′)} are in involution, and from remark 1. That the kind of the pencil
is the claimed one, follows from the aforementioned harmonicity property of the pairs
(A′, A′′) ∼ (B ′,C ′) and Lemma 3, which implies that also (A′, A′′) ∼ (B ′′,C ′′). This
shows that the inversion on circle κA maps κB onto κC and analogous properties for the
cyclic permutations of the letters. Thus, the three circles intersect and, by the conformality
property of inversions, the angles around the intersection points of the three circles must
be equal, thereby completing the proof. �

4 Points contained in their radical axis

The location of the trilinear radical of D, defined as the radical axis of the three isogonal
cirlces, whose existence has been established in the previous section, can be determined
through its intersection D0 with the trilinear polar εD (see Figure 12). In fact, using

A

B

C

C1 A1

B1

D

B' A' C'
εD

C'' A''B''

D0

Figure 12 Locating the trilinear radical of D (Color figures online)

the involution f, interchanging the diametral points on εD of the member-circles of the
pencil, point D0 is interchanged via f with the point at infinity P∞ of εD. Geometri-
cally this amounts to identifying the radical axis with the, so to say “biggest” circle of the
pencil.

For this, we can select the first two basic points of the homogeneous system on εD

to be the points {A′, B ′}. Every point of εD is then expressed as a linear combination
X = x A′ + yB ′, and the involution f is represented by a function of the form:

t ′ = f (t) = at + b

ct − a
, with a2 + bc �= 0. (3)

The variable t in equation (3) is the ratio t = x/y and we have to find the constants
{a, b, c} from the given data.
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We do this using barycentric coordinates w.r. to the triangle of reference ABC ([21]). This
is a system of “projective coordinates” of the plane adapted to the triangle ABC and its
centroid G, which, to these particular four points associates the coordinates {A(1, 0, 0),
B(0, 1, 0), C(0, 0, 1), G(1, 1, 1)} describing every other point of the plane P by its “coor-
dinates” (x, y, z) defined up to non-zero multiplicative constant and representing it also
formally as a linear combination P = x A + yB + zC. Coordinates restricted to satisfy
x + y + z = 1 are called “absolute barycentrics”.

Identifying points D with their coordinates (u, v,w) and referring to Figure 12, we find
by standard calculations in barycentrics ([21, p. 25]) that:

A′ = (0 : v : −w), B ′ = (−u : 0 : w), C ′ = (u : −v : 0),

A′′ = (2u : −v : −w), B ′′ = (−u : 2v : −w), C ′′ = (−u : −v : 2w).
(4)

In our base {A′, B ′} of εD we have the representation of the points:

A′ = 1 · A′ + 0 · B ′, A′′ = A′ + 2B ′,
B ′ = 0 · A′ + 1 · B ′, B ′′ = 2A′ + B ′.

As we noticed in Section 2, the involution f is determined by knowing two points and
their images, which is the case with {A′, B ′} and {A′′, B ′′}. Writing explicitly the ratios

x ′

y ′ = a(x/y) + b

c(x/y) − a
= ax + by

cx − ay
,

we come to the equivalent equation, which can be used to find the constants {a, b, c}:
c(xx ′) − b(yy ′) = a(xy ′ + x ′y).

Substitution in this of the coordinates for {A′(1, 0), A′′(1, 2)} and {B ′(0, 1), B ′′(2, 1)}
leads respectively to {c = 2a, b = −2a} and the form of the involution:

t ′ = f (t) = t − 2

2t − 1
. (5)

On the other side, the point at infinity of the trilinear polar εD of D, which has the
coefficients (1/u : 1/v : 1/w), is calculated as intersection with the line at infinity,
with coefficients (1 : 1 : 1), producing by the vector product, up to a factor, the point
at infinity:

P∞ = (u(w − v) : v(u − w) : w(v − u))

= (2v − u − w)A′ + (−2u + v + w)B ′ = x A′ + yB ′.
(6)

By the involutive nature of f (t), considering the point D0 = x ′A′ + y ′B ′ and setting in
equation (5) x ′/y ′ = t ′ = f (x/y), for {x, y} given by equation (6), produces after a short
calculation the coordinates:

D0(u, v,w) =
⎛
⎝u(v + w − 2u)

v(w + u − 2v)
w(u + v − 2w)

⎞
⎠ =

⎛
⎝ u(1 − 3u)

v(1 − 3v)
w(1 − 3w)

⎞
⎠ , (7)

the last equation being valid only if u+v+w = 1, i.e., when we use absolute barycentrics.
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Figure 13 The quadratic transformation D 
→ D0 (Color figures online)

Remark 2. The transformation D 
→ D0, described by equations (7), is a so-called “Cre-
mona quadratic” transformation of the projective plane ([19, p. 19]), mapping lines to
conics. Figure 13 illustrates the behavior of this transformation showing the conics which
are transforms of various lines through the symmedian point K of the triangle ABC.
This could be used to give an alternative proof for the uniqueness of K , as claimed below,
in Theorem 3. Since the lines through K map to conics through D0(K ), and the map
restricted to such a line is not periodic, no other point of the line can map to D0(K ).

The next theorem formulates the main result of this section (see Figure 14).

Theorem 2. The points D of the plane, which have the property to lie on their trilinear
radical ηD w.r. to the triangle ABC, lie on an algebraic curve of fifth degree (a bi-
nary quintic), having double points at the vertices and the centroid of ABC and passing
through the middles of the sides of the triangle. Further, the tangents to the curve branches
at the centroid G and the vertices are orthogonal, in the case of vertices coinciding with
the bisectors of the respective angles of ABC.

Proof. This results by writing the condition of orthogonality of the two lines {εD, DD0}
([21, p. 54]):

SA pp′ + SBqq ′ + SCrr ′ = 0. (8)

Here {(p : q : r), (p′ : q ′ : r ′)} represent the points at infinity of the two lines, the symbols
{SA, SB , SC } being defined by the expressions:

SA = (b2 + c2 − a2)/2, SB = (c2 + a2 − b2)/2, SC = (a2 + b2 − c2)/2,
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in which {a = |BC|, b = |C A|, c = |AB|} are the side-lengths of the triangle of reference
ABC. The point at infinity of εD is given by equation (6) and this of DD0 is easily found
using equation (7):

(u2(v + w) − u(v2 + w2) : v2(w + u) − v(w2 + u2) : w2(u + v) − w(u2 + v2)).

Introducing these into equation (8) leads to the desired equation of fifth degree:

SAu2(w − v)(u(v + w) − (v2 + w2)) + . . . = 0, ⇔
a2vw(v − w)(vw − u2) + . . . = 0.

(9)

where the dots, as usual in calculations with barycentrics, denote the sum of the other two
expressions resulting from the first by cyclic permutation of the letters. Figure 14 shows

A

B C

G

K

A'

B'
C'

Figure 14 Curve of points {D} having DD0 ⊥ εD (Color figures online)

such a “quintic” and the tangents of the two branches at A, coinciding with the bisectors
of the angle Â.

Actually we could stop the proof here, since equation (9) identifies the curve with
“Stother’s quintic” ([12], [11, p. 219]) having all the stated properties and many more.
Since however explicit proofs of the orthogonality of the tangents at the nodes, especially
at G, are to the best of my knowledge not readily available, I sketch them briefly.

The fact that the curve passes through the vertices, the middles of the sides, the centroid G
and the symmedian point K is easily verified by replacing in equation (9) the coordinates
of these points {(1 : 0 : 0), (0 : 1 : 0), . . . , (1 : 1 : 1), (a2, b2, c2)}.
To show that the curve has at the vertices and the centroid double points or “nodes” we
apply the standard procedure of algebraic geometry ([13]) for the location and the kind
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of “singular points”, involving the partial derivatives of f, which is the function on the
left side of equation (9). The “singular” points are those at which all first order deriva-
tives vanish. At each one of these points is then calculated the 3 × 3 matrix of second
derivatives

H f =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂2 f

∂u2

∂2 f

∂v∂u

∂2 f

∂w∂u
∂2 f

∂u∂v

∂2 f

∂v2

∂2 f

∂w∂v
∂2 f

∂u∂w

∂2 f

∂v∂w

∂2 f

∂w2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

the so-called “Hessian” of f. The matrix, because of the homogeneity of the function
f, is always singular, i.e., has a vanishing determinant and in the case of nodes it is non-
zero. This implies that the conic represented by the matrix is degenerate, consisting of the
product of two lines, which are precisely the “nodal tangents” of the curve at the singular
point.

From the partial derivatives of first order in our case, characteristically one is:

∂ f

∂u
= SA[u(v − w)(2(v2 + w2) − 3u(v + w))]

+ SB [v2(2u(v − u) − (u − w)2)]
+ SC [w2(2u(u − w) + (u − v)2)],

analogous expressions being valid for the other partial derivatives of first order. Replacing
in them the coordinates of the four points {A, B,C, G} we find that they satisfy

∂ f

∂u
= ∂ f

∂v
= ∂ f

∂w
= 0,

Hence these points are singular. To further inspect the kind of the singularity we consider
the partial derivatives of the second order, characteristically one of them being:

∂2 f

∂u2
= 2SA[(v − w)((v2 + w2) − 3u(v + w))]

+ 2SB[v2(v + w − 3u)]
− 2SC [w2(v + w − 3u)].

Calculating the other derivatives at the points {A, B,C, G} we find indeed that the corre-
sponding Hessian matrix is non-vanishing but degenerate. Characteristically, the matrix at
A(1, 0, 0) being equal to

H f (1, 0, 0) =
⎛
⎝0 0 0

0 −2c2 0
0 0 2b2

⎞
⎠ .

The corresponding conic, traditionally called “tangent cone” at the singularity point is in
this case

−2c2v2 + 2b2w2 = 0 ⇔ (cv − bw)(cv + bw) = 0,
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The two lines {cv − bw = 0, cv + bw = 0} representing the bisectors of the angle Â.
Hence the proof concerning the claim for the vertex A of the triangle. Analogous argu-
ments prove also the claim for the other vertices. At the centroid G the matrix is seen to
be equal to the degenerate:

H f (1, 1, 1) = 2

⎛
⎝b2 − c2 a2 − b2 c2 − a2

a2 − b2 c2 − a2 b2 − c2

c2 − a2 b2 − c2 a2 − b2

⎞
⎠ .

Disregarding the factor, if the corresponding quadratic form is the product of two lines

(pu + qv + rw) · (p′u + q ′v + r ′w),

then the coefficients must satisfy the relations

pp′ = μ(b2 − c2), qq ′ = μ(c2 − a2), rr ′ = μ(a2 − b2),

qr ′ = rq ′ = μ(b2 − c2), rp′ = r ′ p = μ(c2 − a2), pq ′ = p′q = μ(a2 − b2),
(10)

for some constant μ. On the other side, the orthogonality of these two lines expressed in
barycentrics is given by ([15, II,p. 41] gives the corresponding condition for trilinears):

a2 pp′ + b2qq ′ + c2rr ′ − SA(qr ′ + q ′r) − SB(rp′ + r ′ p) − SC (pq ′ + p′q) = 0. (11)

A short computation shows that latter equation is indeed satisfied if we replace in it the
coefficients with their equivalents from equations (10), thereby proving the orthogonality
of the tangents at G and completing the proof of the theorem. �

Remark 3. It is known that the two tangents of the curve at G are identical with the axes
of the “Steiner ellipse” ([10, p. 108], [7, p. 378]) of the triangle ABC, seen in Figure 14.

5 Trilinear isodynamics of the symmedian point

A

B
C

C'

B'

A'

B''

A''

C''

K

I1

I2
Lemoine axis

Figure 15 Coincidence at K of two “isodynamic-points” notions (Color figures online)
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Theorem 3. With the notation and definitions adopted so far, the symmedian point K
is the only point of the plane whose trilinear isodynamics coincide with the traditional
isodynamic points {I1, I2} of the triangle of reference ABC.

Proof. If for a point D the trilinear isodynamics coincide with the traditional isodynamic
points of the triangle, then the line of centers of the trilinear isogonal circles of D must
coincide with the “Lemoine axis” of ABC. This identifies the trilinear polar of D with
the Lemoine axis, hence also D with the symmedian point K of ABC. This proves the
uniqueness part of the theorem. Figure 15 illustrates the case showing also the two pencils
of circles: the trilinear isogonal circles of K with diameters {A′A′′, B ′B ′′,C ′C ′′} and the
Apollonian circles of ABC , whose centers are the points {A′, B ′,C ′}.

K

I1

I2

O

A

B C

C1

A1

B1

A'

A''

κ
κΑλα

Le
moin

e a
xis

Brocard axis

A2

A3

Figure 16 Circle κA passing through {I1, I2} (Color figures online)

Figure 16 completes the proof of the other half of the theorem, showing why the circle κA

on diameter A′A′′ passes through the traditional isodynamic points {I1, I2}. In fact, it is
known that the Lemoine axis is the polar of K w.r. to the circumcircle κ(O) of ABC
and the isodynamic points (I1, I2) are harmonic conjugate to (K , O) ([14, p. 295]). This
implies that the polar of A′ passes through K . Since it is also orthogonal to A′O, it
coincides with the orthogonal to A′O from K , which is the line K A′′. By the general
properties of polars, points A′ and A3 = K A′′ ∩ O A′ are inverse w.r. to κA, hence latter
circle is orthogonal to κ. Since it is also orthogonal to the Lemoine axis, the circle κA

belongs to the pencil D′ of circles that are orthogonal to the pencil D generated by κ
and the Lemoine axis. Hence it passes through {I1, I2}. Analogous is the proof also for the
other two circles {κB, κC } on diametters correspondingly {B ′B ′′,C ′C ′′}. �
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