HAUSDORFF AND QUASI-HAUSDORFF MATRICES ON
SPACES OF ANALYTIC FUNCTIONS

P. GALANOPOULOS AND M. PAPADIMITRAKIS

ABSTRACT. We consider Hausdorff and quasi-Hausdorff matrices as operators
on classical spaces of analytic functions such as the Hardy and the Bergman
spaces, the Dirichlet space, the Bloch spaces and BMOA. When the gener-
ating sequence of the matrix is the moment sequence of a measure pu, we find
the conditions on p which are equivalent to the boundedness of the matrix on
the various spaces.

1. INTRODUCTION

1.1. Hausdorff and quasi-Hausdorff matrices. Let A be the forward difference
operator, defined on scalar sequences {/i, }3° by Ay, = fin — fint1, and its iterates
A=A, AF =AoAFlfork=1,2, . The Hausdorff matriv H = H(j,), with
generating sequence {/,Ln}ar ° is the infinite lower-triangular matrix with entries
g = () A" P, 0<k <n.

An important special case occurs when {Mn}aroo is the moment sequence of a
measure. That is, pu,, = f((),l] t"™ du(t), where p is a finite positive Borel measure on
(0,1]. These matrices are denoted by H,, and their entries are easily found to be

1
= (3) [ a-tawn . osksa,
0

They had been, originally, studied in connection with summability of series and
later on as operators on sequence spaces and on spaces of functions. See [9], [10],
[12], [4], [14]. The study of Hausdorff matrices H,, as transformations on spaces of
analytic functions such as the Hardy spaces HP, 1 < p < +00, was introduced for
the first time in [6].

In general, let X be a Banach space of analytic functions on the unit disc
D. We consider a Hausdorff matrix H, = (c,x) and, for each function f(z) =

Zi% anz" € X, we consider the formal power series
“+o0 n
Hu(£)() = Y2 (D cnmar) 2"
n=0 k=0
and also the transpose matrix A, = H; and the corresponding formal power series
+oo 4o
Au(NE) =D (X ennan) 2"
k=0 n=k
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2 P. GALANOPOULOS AND M. PAPADIMITRAKIS

The matrices A, are called quasi-Hausdorff matrices.

In this work we address the problem to find, for various classical spaces X, the
exact necessary and sufficient conditions on the measure u so that for every f € X
the series defining H,(f) and A, (f) converge in D, the resulting functions belong
to X and the operators H,, and A, are bounded on X.

The spaces X we shall consider are the Hardy spaces, the Bergman spaces AP,
1 < p < 400, the disc algebra Ay, the Dirichlet space D, the spaces BMOA and
VMOA, the Bloch-space B and the little-Bloch-space By. For all the facts about
these spaces see, for instance, [5], [8] and [21].

In the rest of this work the symbol C' stands for an absolute positive constant,
while C(k,,...) stands for a positive constant depending only on the parameters
k,l, ... . These constants may not be the same on their various occurrences, even in
the same set of equalities and/or inequalities. The symbol a =< b means that ¢ is
bounded from above and from below by two positive absolute constants.

1.2. The associated integral operators. For ¢ € (0,1] we consider the two
families of transformations

tz
= =tz+1—-t D
¢t(z) (t—1)2+1 ) ’wt(z) z+ ) KA )
of the unit disc into itself and the family of weight functions
1
= D.
vl = s1 2 €

If i is a finite positive Borel measure on (0, 1], then we define
(6 = [ mEsGE) @, 2D
0,1

The integral is finite, since, by the Lemma of Schwartz and ¢;(0) = 0, we have

wi(2)|1f (@e(2))] < 1=z 5uP | <) Q-
We also define

T.(f)(z) = o f(We(2)) du(t)
for those analytic functions f and points z for which the integral is defined.
The following result is proved in [6], but only under extra conditions on p.

Lemma 1.1. Let p be a finite positive Borel measure on (0,1] and f be analytic in
D. Then the power series H,(f)(z) converges in D and H,(f)(z) = S.(f)(z) for
every z € D.

Proof. The absolute convergence of H,(f)(z) is proved by

SIS conarllr < [ fw(i() ) dtt)

n=0 k=0 0.1 jo—
t|Z| F
ol (=) dul®)
/(01]1— 1—t||z: —1)lz]
<! w(0,1] f\akHz\k < 400
T 1ok it .

The same calculation, without absolute values, gives H,(f)(z) = S.(f)(2). O
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Unlike the case of H,,, the coefficients b, = ZIS,’C Cn,k0n Of the power series
A, (f)(z) may not converge. For the sake of completeness we state the following
trivial lemma, known from [6].

1]. Then, for each
)(2) = Tu(f)(z2) for

Lemma 1.2. Let u be a finite positive Borel measure on (0,
polynomial f, the function A, (f) is also a polynomial and A, (
every z € D.

1.3. Previous results and the structure of this paper. The operators H, and
S,, are identical (Lemma 1.1) and this we denote in the whole work by H,, = 5.

On the other hand, the operators A, and T}, are not a-priori identical outside
the linear space of polynomials (Lemma 1.2). The easiest of the two is T, and
its boundedness is studied first. One then needs an extra argument to pass to A,
and this becomes involved in certain cases, like H>® = A, BMOA and B, where
polynomials are not dense.

Section 2: In [6] a condition (depending on p) on u was proved to be sufficient
for the boundedness of H,, =T}, : H? — HP? in all cases 1 < p < 400 and the same
condition was also proved necessary in case p = 1.

Independently, [15] gives the same sufficient condition for the boundedness of
H,=T,:H? — H? when 2 < p < 400 and a weaker condition when 1 < p < 2.

In the present parer we prove (Theorem 2.2) that the condition in [6] and in [15]
(but, there, only when 2 < p < +00) is also necessary and we cover the full range
1 < p < +oo. We also give (Proposition 2.1) another proof for the sufficiency of
the condition, entirely different from the previous proofs in [6] and [15].

Regarding the boundedness of A, and of T, on H?, [6] gave the condition on
which is necessary and sufficient in the case of T}, and for 1 < p < 400 and [15]
gave the necessary and sufficient condition in the case of A, and for 1 < p < +o0.

Here we give (Proposition 2.2), in a different way, the necessary and sufficient
condition for the boundedness of T}, in the range 1 < p < +oo0 and (Theorem
2.1) the necessary and sufficient condition for the boundedness of A, in the range
1 < p < 4+00. We also prove the equality of the two operators on HP when
1 <p<4o0.

Another result (Theorem 2.2) is that H, : H? — H? and A, : HP — HY are
adjoint when 1 < p < 400 and p’ is the exponent conjugate to p.

The boundedness of T}, and H,, on Ay is treated in Proposition 2.3 and Theorem
2.3. The more difficult cases of the disc algebra A and, especially, of H* for the
operator A,, are covered by Theorems 2.4 and 2.5.

Section 3: In [15] there is a sufficient condition for the boundedness of H,, on
the Bergman spaces AP in the restricted range 4 < p < 400 and we give (Theorem
3.2) the necessary and sufficient condition for the full range 1 < p < +4oco. In
order to do this, it seemed technicaly necessary to introduce and study in detail
(Proposition 3.3) the adjoint S}, of H, = S,,.

In [15] a sufficient condition for the boundedness of A, on A? is given when 1 <
p < 4+00. Here we give (Proposition 3.1) the necessary and sufficient conditions for
the boundedness of T}, when 1 < p < 400 and (Theorem 3.1) for the boundedness
of A, when 1 < p < 4o00. Observe that the case of p = +o0 for A, is already
treated in the previous section.

Section 4,5,6: We prove the necessary and sufficient conditions for the bounded-
ness of H, and of A, on the Dirichlet spaces, BMOA, VMOA, the Bloch and the
little-Bloch spaces. For all these there were no previous results in the literature.
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Section 7: Finally, we state, but without proof, our results concerning the Lips-
chitz classes and a few open problems that might be interesting.

In all cases we give exact estimates - and in some instances the exact values - of
the norms of the operators on the various spaces.

2. THE HARDY SPACES H?, 1 < p < 400, AND THE DISC ALGEBRA.

In the following proposition we find sufficient conditions on p for the boundedness
of S,, on the H? spaces, giving a more direct proof than the one in [6].

Proposition 2.1. Let i be a finite positive Borel measure on (0,1] with
) St du(t) <400, if 1<p< oo,
(i1) Jio,ylog ¢ dp(t) . ifp=1.
Then H, =S, : HP — HP? is a bounded operator and
() [1Hyull o e < Cmax(s45,1) [io 87 7 " dp(t) < +00,  if 1<p< 400,
(@) | Hpullgr— e < Cf(m](l +log 3) du(t) , ifp=1.

Proof. Let f € HP, 1 < p < 4o00. Using the generalized Minkowski inequality,

2 %
@) 1Ol < [ (o [ P edenyr

We fix a ¢t € (0,1] and work with the inner integral

- i0
All) = /W 11— (11—t)ei9|p ‘f<1 - (tle— t)e”)‘p % '

We define €'® to be the radial projection of on the boundary dD

te'?
1—(1—t)et®

. i _(1_ 6
of the unit disc. This means e*® = 1_(tle_i)ei8 L (ltt)e | and, either by trivial
calculations or geometrically, one can see that,
do
2.2 — > =, 0<t<1.
(2.2 | ) € <

If Nf(e'®) = supg<, 1 |f(re’?)| is the radial maximal function, then, the above
estimate (2.2), gives, for 1 <t <1,

" ioy\p 99 P

(2.3) Ay s [ INF(E) o < CPllfll -

—T

Now, let 0 <t < 3 and write A(t) = [i_5c, + ficppjar = Ar(t) + Aa(t) .
For the first mtegral, using (2.2) we find

1 oy |40 d0 _ O
mwsg [ Wi |5l 5 < g 1

0

In Ag(t) we have ‘ S <1 5 lmplylng ‘f(w)‘ S CHfHH:n .

Hence,

te'?
1—(1—t)et®
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CP
1 p—1
—df || fll» <

w2 1 f15, fl<p<+oo,
Ay(t) < P /

op
t<|0|<m .
! Clog! flm . ifp=1

and, finally, in case 0 <t < %,

o1 et I if1<p<too,
At) <
C(1+logd) |l , ifp=1.
Together with (2.1) and (2.3), we get the announced estimates for p € [1, +00).
In case p = 400 the estimate is immediate, since

SIS [ IR0 < [ @l

)

O

The following result is known from [6], where, in fact, the equality ||T),| gr—ar =
f(O,l] £ du(t) is proved for p € [1,4+00) through the use of composition operators.
Here we present an alternative proof.

Proposition 2.2. Let 1 < p < +o0o and p be a finite positive Borel measure on
(0,1]. Then T, : HP — HP defines a bounded operator if and only if

/ tr du(t) < +o0o .
(0,1]

Also

_1 _1
£ du() < | Tullwo e <C | 475 du(t) |
(0,1] (0,1]
Proof. Tt is easy to prove that there exists a fixed @ > 1 such that, for every
0 € [~m, 7], every € [0, 1] and every t € (0,1), the point tre? + 1 — ¢ is contained
in the kite-shaped region T',(e'*?) = {Z eD: |611't_9|;|Z‘ < a} :
Now, it is implied that |f(tre?® + 1 —t)] < Nyf(e®®®), where N,f(¢) =

Sup.er, () | f(2)| is the well-known non-tangential maximal function.

Assuming that f(o 1 tw du(t) < +oo, and using Minkowski’s inequality,

Ol < { [ /( ) i @y

tm iop doy: 1 _1
<[ ([ Nty 2} du <Co [ £ aut) Il
(0,1] ~J —trw ™ (0,1]

Assuming, now, that T, is bounded on H? and considering the functions f(z) =
ﬁ, 0 < A< %, it is clear that T,(fy) = f(o,l] t% du(t) fn . This implies
f(o 1 & du(t) < || Tyl gr—p» for all A < % , finishing the proof. O

Now we shall see that, under the same conditions, A,, defines a bounded operator
on Hardy spaces.
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Theorem 2.1. Let 1 < p < 400 and u be a finite positive Borel measure on (0, 1].
Then A, : H? — HP defines a bounded operator if and only if

[ —— / 15 dut) < +o0o
(0,1]

Moreover, under this condition, A,(f) =T,(f) for every f € HP.

Proof. Let 1 < p < +oo and f(O,l] t7r du(t) < 4oo. If f(z) = S a2 € HP,
then sy — fllgr — 0, where sy(z) = Zg:o anz™ are the partial sums of the
Taylor series of f. From Lemma 2.2 and Proposition 2.2 we get immediately that
A,(sn) =Tu(sn) — T,(f) in HP. Using series representation, this means that

+oco N 400
> (3 enven ) = Tuh)(2) = 3 i
k=0 n=k k=0

in HP. Thus, for each k, we get ZI:;C Cn,k Gn, = by. Therefore, the series A, (f)()
is identical to the function 7,,(f)(z) and, combining this with Proposition 2.2, we
conclude that, for each p € (1,400), A, : H? — HP defines a bounded operator
and

[Aulln <€ [ 75 dute)
(0,1]

Let p = 1 and [, Ldu(t) < +oo. Let also f(z) = i anz" € H' and
consider the (C, 1) means oy (z) = Zg:() (1 - NLH)anz” of the Taylor series of f.

Since |lon — fllgr — 0, we get A, (on) =T, (on) — T,(f) in H'. This means

“+o0 N “+oo
S (1= 5 Jennan) 2 = Tu(D)() = Y bzt
k=0 n=k N+l k=0

in H', implying that, for each k, the series Z:f,’g Cn kGy 1 (C,1) summable to
bi. In order to get Z::;c Cn kGn = by, it is enough to show Tauber’s condition:
Cn kGn = O(=). Since |ay,| < || fllg1, it is enough to show ¢, x = O(=). Now

1 1
n n

(
(07t]
< (n)/ d,u(t)/ ‘(Sk—’_l(l—s)n_k)/lds
k) Joy t Jou

k+1 k
§2(1454-1) n kl/ du(t):O( ).

1
n

After having proved that by = Zz:; Cn,kGn, the rest of the argument is the same
as in the case 1 < p < +o0.
For the necessity, we assume that A, is bounded and consider the functions

finlz) = ﬁ = ::)(—1)”(:3‘),2", for 0 < A < % . Since (—1)"(;3‘) >0, we
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find that
icn,k(%)”(?) - /(0’1] t’“(—l)’“(_,j) i (_An_ k) (—=1)"(1 — )™ duf(t)

= (—1)’“(_,3) /( - £ dp(t) .

This implies that f(oa] t= du(t) < +oo for every A, 0 < A < 117, and

A6 =3 (S st (7)) = [ o )

k=0 n=k

Therefore f(o 1 t= du(t) < ||Aullpr—pr , for every X € (0, %), finishing the proof.

For the exact value of the norm, see the remark before Proposition 2.2. O

The proof of the case p =1 in the following theorem is in [6] and we include it,
for the sake of completeness.

Theorem 2.2. Let1 < p < +oo, p = p% and u be a finite positive Borel measure
on (0,1]. Then H,, is bounded on HP if and only if

[Hollrir = [ 67 du(t) <400, if 1<p<too
(0,1]
and )
| Hllis o = /( (U Tog ) du(t) < oo
0,1

If 1 < p < 400, then, under the above conditions, H, : H? — HP and A, :
HP — H? are adjoint.

Proof. Proposition 2.1 proves the sufficiency part.
If p = +o0 and H,, is bounded on H*°, then H, (1) € H* and, hence,

1 1
— du(t) = lim ) < | H e e
_/(071] t ( ) r—1— (0,1] 1— (1 _ t)l‘ ( ) ” [L”

Also, if f(o 1 +du(t) < 400, then

1
L e

Now, let p =1 and H,, be bounded on H L. Using Hardy’s inequality, we get

1
O I~ < [ 5 an@) 1=

—+oo
1 1 1 1
1+1log —)du(t) <C log — du(t) =C E / (I—=1)" du(t)
/(0,1]( 2 ouyl—t 7t ot 1o

< COIH, W lar < CllHpll g1 — 1 -

Let 1 < p < 400, assume that H, is bounded on H? and let H/: : H? — H” be
the bounded adjoint of H,,. We claim that for all f € H? and all polynomials g,
2 2
o—— df g~ b
0 i _ i60 7
H,(f)(e%)g(e?) 5— = ; F(e)Aulg)(e?) 5 -
This is trivial to prove when we replace €'’ by re*; we subsequently let 7 — 1—,
bearing in mind that both f and H,(f) are in H?. This identity implies that
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H,(9) = Au(g) for all polynomials g and, in view of the density of polynomi-
als in H?" and of Theorem 2.1, the proof will be complete, if we prove that
Jiom 7" du(t) < +oo.

Let 0 < A < % and consider the functions fy(z) = (1—%)* =S (”+:L‘_1)z" .
For the partial sums sy n of the Taylor series of fy we know that ||sx x — fall g —
0 and, since H,, is bounded, we find A, (sxn) = H,(sxn) — H/(fy) in H?
Thus, for each z = z € [0,1) we get A, (sxn)(z) — H,(f1)(x) . Due to monotone
convergence,

+oo
Aot = [ S (T o e = [ n)

0,1] ,—o
Therefore, f(O,l] & du(t) falz) = H,,(f\)(z) for every z € [0,1). By analytic
continuation, this extends to all z in the unit disc, implying f(o 1] t% du(t) <

H, g g = [ Hpllo—pie for all X € (0,%) and, finally, [, j#7 " dp(t) <

O

| Hpull e —pe -

The last two results concern the behaviour of Hausdorff and quasi-Hausdorff
matrices on the disc algebra Ajg.

Proposition 2.3. Let p1 be a finite positive Borel measure on (0,1]. Then T, is
bounded on Ay and

||TM||A0*>A0 = /14(07 1] .
Proof. If f € Ag and 21, 25 in D, using w = tz + 1 — ¢, we find easily
1T (f)(21) = Tu(f)(22)| < (0, 1] max |If(wl) — flw2)] .

|w1—w2|<[z1—22
Therefore, T),(f) is in Ap.

The inequality [|A, |l 4y—a4, < £(0,1] is obvious and we get the opposite inequa-
lity, considering T},(1) = (0, 1]. O

Theorem 2.3. Let p be a finite positive Borel measure on (0,1]. Then H, = S,
is bounded on Ag if and only if f(o 1 % du(t) < +oo. Moreover,

1
[Hullans = [ du®).
(0,1]
Proof. The necessity of the condition and the exact formula for the norm of the
operator are proved in the same way as the case p = 400 of Theorem 2.2. Therefore,
it is enough to prove the sufficiency of the condition. Hence, let |, ©,1] % du(t) < +o0o

and f € Ag and for any € > 0 find § > 0 so that f(o 5) 1 du(t) < e. Then

1 tz
H(NE) 1Nl <26 e+ [ [ (75 —52)

1 tZO
— du(t) .
17(17t)zof(17 (14)20)) uet)
Due to uniform convergence, the last term tends to 0 when z — zy. Hence,

limsup, ., |H,(f)(z) — H.(f)(20)| < 2€f]|a, implying that H,(f) is continuous
at the arbitrary zg € D. [
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The behaviour of A, on the spaces Ay and H*® remains open and the last two
results of this section describe exactly this behaviour.

Theorem 2.4. Let p1 be a finite positive Borel measure on (0,1]. Then A, is
bounded on Ag if and only if sup, lognfO 1 (1 —t)™du(t) < +oo.
In this case we have that A, =T, on AO and, hence, ||A,|la0—a, = p(0,1].

Proof. A. The maximum of t*(1 — t)"~F on (0,1] is (£)¥(1 — Eyn=k at ¢ = £
Therefore,

o= ()]
n,k k © L

)
g(?uo{ﬂ(o,éﬁ)-+nﬁe—%%ﬁmo,u}.

Hence, when n — 400,

(1 — )"k du(t) + (Z) /[ th(1— )" F du(t)

(2'4) Cn,k — 0.

Our next aim is to prove that {c, 1} is almost-decreasing. The meaning of this
is expressed by (2.5) and (2.6) below. Clearly,

1
(2.5) ek — Cng1,k > — nt /
) k) k (O

th(1 - t)n—k‘(i — t) du(t) = —rnk ,

‘n+41
where
+oo
S < Clk znk L @ dute)
n=k (, k+1)
— C(k / tkzn ek 1y () dut)
’k+1
(2.6) < C(k:)u(o L) < +00 .
>~ 7k+ 1

The next result is that {c, } is almost-convex, as expressed by (2.7) and (2.8).

Cn,k_QCnJrl,k + Cn+2,k
(n+2 A kN2 k(nt2-k)
_< k >/(0,1]t(1_t) {<t_”+2> _(”+1)(n+2)2}dﬂ(t)'

For

We set t5, = £ 4 A22k) - and then 0<t,,<th k<m1n(

w42 T\ D nt2) e 1) -

2
all t € (¢, k,tik) we have ‘(t— i) _ knt2oh) oo w . Hence,

n+2 (n+1)(n+2)2 | =

(2.7)

1
Cn k*QCn—&-l,k + Cn42.k Z -C " 7/ tk(l - t)nik d:u(t) - 7R"»k ’
’ ’ k—1/n (t

+
n,k’tn,k)
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where R, ; = 0 when k£ = 0. This implies

“+o0
Z nR,, < C(k Z nk- 1/ X(o,tn,k)(t) du(t)
ne=k 0, 1

[Zk

(2.8) <C / th Z nF=1du(t) < C(k)u(0,1] < +oo .

From (2.7),

NE

Clz]k — Cm+1,k = (Cn,k - Cn+1,k)

n=[%]
> Z (_Rn,k - Rmfl,k + Cm,k — Cm+1,k)
n=[%]
(2.9) >—C Y nRyg+Cm(cmk — Cmirk) -
n=[2]

From (2.8) and (2.9) we find limsup,, | m(¢m,k — Cm+1,x) <0 and from (2.5),

k
Mm(Cm.k — Cm+1,k) > m/ tk du(t) > C(’“)“(O’m>

implying liminf,, 4. m(cm,k — Cm+1,k:) > 0 . Therefore
(2.10) n(cnk — Cnt1,5) — 0.
Applying summation by parts together with (2.4) and (2.10),

+oo
(2.11) > (4 D (enk — 20n41k + enyan) = (b + Depn — kergrn -
n==k

which, together with (2.7) and (2.8), gives

+oo

Z(n + 1)|Cn,k - 2cn+1,k + Cn+2,k|
n=~k
—+o0
(2.12) < (k4 )exp — keern +2 Y (n+ 1) Ry < +oo .
n=~k

B. Let now, f( ) = Z::E) a,z" € Ay and consider s, = ag + --- + a, and
op = n+1 (so+ -+ spn) . After the usual summation by parts, we get

N N-2
Z Cn kln = Z (Cnk — 2Cni1,k + Cnyok)(n+ 1oy

n=k n==k

(2.13) + N(en-1k — Nk )ON-1 — k(Chyk — Cht1,6)0k—1 + CN &SN — Ch kSk—1 -

Since {o,} is bounded, from (2.10), (2.12) and (2.13) it is implied that the conver-
gence of Z::;C Cn,kGn 1s equivalent to the existence of lim,,— 4 ¢y kSn in C.
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Assume, now, that A, is bounded on Ag. Then, for every f € Ao, the series

20 a0y, converges and, hence, the limit

g
lim ¢, 08, = hrn cn()/ D,( 10
n—-+4oo
exists in C, where D, () = 2 + >, _ cosvf = % is the Dirichlet ker-
= 2

nel. From the Uniform Boundedness Principle we get that sup,, ¢,,0logn < 400 .
Because lim,,_. 4 ¢p,08n, = 0 for every polynomial f and because polynomials are
dense in Ap, we conclude that lim, .4 cn05, =0, for every f € Ao.

Suppose that

(2.14) sup ¢y, logn < 400

is true for some k. We shall prove it for k+ 1, implying that it is true for all k£ and,
hence, that

(2.15) lim ¢ppsp =0

n—-+o0o

is true for all k. Now, from (2.9),
n k

Cnk+1 = m(cn—l,k - Cn,k) b+ 1 n,k
+oo
<Ck) > mRuyy+ Clk)(cz)p + cnk)

m=[2]

and, performing more carefully the estimates that led to (2.8), we get

i1 < Clk Z “/ ¥t 0 d0) + € etz + o)
(2]

SC(k)/ . tk Z mk1 du(t) + C(k) (cz)x + Cnk)
(0,55)

m=[3]

< O (0, %) + OW) (g0 + ) < O (etgr +en)

From this and (2.14), we get sup,,logn ¢, k1 < +0o and the proof of (2.14) and
(2.15) is complete for all k. Now, (2.13) implies

|

(2.16)
+oo

Z Cn,kOn = Z (Cnke —2Cnt1,6 FCng2k)(n+1)on —k(Ch kb — Cht1,k)Ok—1 — Ch b Sk—1
n=~k

for every k.

From (2.7), we have that for every p € [0,1)

+oo 4o +oo 400

;<;an’k>pk < C’;; (k ﬁ 1) /(071] (1 — 6" F du(t) p*

p
=C ————— du(t) < +o0
oy A= i) *®
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and, from (2.12),

+oo 00
Z Z(n + Dlenk = 2Cnt1,k + Cnyak] oF
k=0n=k
+oo 400 400
< Z((k + D — kewsrk)p” + 22 Z(n + DR, xp*
k=0 k=0 n=k
“+o00 400

1 — 3pt + 2pt? A
= I ) + 2 (n+ 1) Ry ip® < +00 .
/(0,1] (1—pt)? kZZOT;C

Therefore, from (2.16) and for any z € D,

400 +o0 f+o0o n
D (3 cnsan) = 30 (Do ens = 2o + ensan)s) (n + D
k=0 n=k n=0 k=0
+o00 +0oo
= k(eknk = rrrr)on-12" =Y cppsio12b
k=1 k=1
n+1 n+2
= Z(chkz —2ch+1 w2t + ch+2kz ) (n+1)oy,
n=0 k=0
+oo
— [ > ent -t " dult) = ()
0,1] ,,—o
[l

Theorem 2.5. Let p be a finite positive Borel measure on (0,1]. Then A, is
bounded on H™ if and only if lim, . logn f(o ne — )" du(t) =
In this case A, =T, on H™ and ||A.|ge— g = p(0,1].

Proof. All results in part A of the proof of Theorem 2.4 remain unchanged, since
the function space is not involved there. On the other hand, part B depends upon
the validity of (2.15) for all k.

If we assume lim,,_, 1o ¢ 0logn = lim, 4o 1ognf(0,1](1 — )™ du(t) = 0, then
exactly as before, we can show by induction that lim, | ¢, rlogn = 0 for all
k. Since |s,| < Clogn || f|lme for all f € H*, we immediately get (2.15) and the
sufficiency part of the theorem is proved.

Now, assume that A, is bounded on H*. Then, exactly as before, we see that
limy,_, 4o €n,05n exists in C for all f € H* and the Uniform Boundedness Principle
implies, as before, that sup,, ¢, 0logn < +o0c . But the polynomials are not dense
in H* and, hence, we cannot easily get
(2.17) lim ¢,plogn=0.

n—-+oo

Therefore, the rest of the proof consists in proving that, if lim,,_, 4 ¢n 05y, exists
in C for all f € H*, then lim,_, { cp,0logn = 0.
Suppose that, on the contrary, there is a sequence {n;} so that

(2.18) Cnj0logn; — p#0.

We say that ¢ is of type C if it is 27-periodic, it is in C*° (R \ 27Z), it is real and
odd, it is decreasing in (0, 7] and satisfies ¢(0+) = 5 and ¢(7) =
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Then (see [ZY])
(i) ¢(n) is imaginary, ¢(—n) = —¢(n) for all n and, hence, sy¢(0) = 0 for all N,
(ii) |sy@(0)] < Cy for some absolute Cy, for all N and all 6,
(iil) syp(0) — (;S(&) uniformly ind < |9| <, for all § and
(i

#0) _
v ) Sllz)gg\/' logN Zn 1¢( )
We, now, construct a sequence of exponential polynomials {¢} as follows.
We, first, consider a function ¢ of type C and a large enough N so that 2/V; is

in the sequence {n;} of (2.18) and so that ‘log N Z;V;l a(n) — 1’ < 1. From (ii),
lsn, 61(0)] < Cy for all 6.
Let 91 = sy, ¢1 and suppose that 1)1, - - , 1, have been constructed so that

(2.19) degy; =N;, j=1,---,k where 2NV are all from {n;} and,

(2.20) N1 > 3N; j=1- k-1
Co 7T .
1 1
(2.23) [P ()] + -+ - + |[¥i(0)] < co(1+§+-.-+ 2k_l) for all  and
]
(2.24) logN ij —1‘<7 =1, k.

From (2.21) we have that, for some & € (0, 3¢,

(225) W@+ @ < Colz+t50) s <

We consider any ¢y1 of type C and supported in [—dg, dx] and take large enough
N1 so that 2Ny is in {n;} and so that

Niy1

N, 3Ny , ‘ E ¢ ’ —
and, due to (iii),

(2.26) SN sy Prt1(0)] < 2k U (A

Now, if we define ¢¥p11 = sy, drt1, then (2.19)-(2.22) and (2.24) are, auto-
matically, satisfied for j = k+ 1. Combining (2.22) and (2.26) for d; < |0 < 7 and
(ii) and (2.25) for |0| < 0y, we get (2.23) for k + 1. Therefore, we have, inductively,
constructed {vy} satisfying (2.19)-(2.24) with k = +oo.

Consider the series
+oo
Z 2Nkl (0)
k=1

y (2.23), the series defines a bounded 27-periodic function f. Due to (2.19) and
(2.20), f € H* and the frequency ranges of the summands do not overlap. From
(2.22), we have that the series converges uniformly in § < |#] < 7 for all  and,
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from (2.23), that its partial sums are uniformly bounded everywhere. Therefore,
the series is the Fourier series of f and, thus,

m

CaN, 083N, (0) = can, 0 Y ¥k(0) =0,
k=1
while, from (2.18) and (2.24),
m N, . Nop, e
Can,, 052N, f(0) = Csz,o{Z Yr(0) — Z wk(n)} = —C2N,,,0 Z Yr(n)
k=1 n=1 n=1
Sonts Uk(n)

log 2N,,

a contradiction to the existence of lim,,_, 4o, ¢y 08, f(0) for all f € H*>. O

1
= —con,, 0log 2N,, — iip #0,

3. THE BERGMAN SPACES AP, 1 <p < +oo.

In this section we study Hausdorff matrices and quasi-Hausdorff matrices on
Bergman spaces AP, 1 < p < +o00. We find the necessary and sufficient conditions
in order for H, and A, to define bounded operators on these spaces.

Proposition 3.1. Let 1 < p < 400 and p be a finite positive Borel measure on
(0,1]. Then T, : AP — AP is a bounded operator if and only if

_2
| T || Ap— a» =/ t™ 7 du(t) < +oo .
(0,1]

Proof. Let 1 < p < +o0, f(o 1 t s du(t) < 400 and f € AP. By Minkowski’s
inequality and the change of variable w = 1;(z) =tz + 1 —1{,

1T ()lar < /( ) 1Sl

Now assume that 7T}, is bounded and consider the functions f(z) = ﬁ, 0<

A< %. Since fyn € AP and T,(f))(z) = f(o,l] & du(t) fr(z) , it follows that
Joa & dp(t) < ||Tyllar—ar forall X e (0,2).
Taking the limit as A — %7, we get the result we want. O

Since A*° = H®, the case p = 400 in the next theorem has been covered by
Theorem 2.5.

Theorem 3.1. Let 1 < p < 400 and p be a finite positive Borel measure on (0,1].
Then the operator A, : AP — AP is bounded if and only if

[ Apllar— a» =/ t=r du(t) < +oo .
(0,1]

Proof. The proof is the same as the proof of Theorem 2.1, using, now, (see[21])

that, if f(2) = 370 a,2" € AP, then Zﬁ;o 2" — fin AP, if 1 < p < +oo, and
25:0(1 — NL_H)anz" — fin AL O
We continue towards finding sufficient conditions so that S, = H, is bounded

on AP. The next result is only a preliminary rough form of Theorem 3.2.
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Proposition 3.2. Let 1 < p < 400 and p be a finite positive Borel measure on
(0,1] under the further conditions

(UZ 0n+1|f(01] )™ du(t)]? < 400, ifp=2,

(ii) [ t? " dp(t) <400, if 2<p<+oo.
Then H, = S, : AP — AP is bounded. Also,

1
2 .
(i) [ Hyll a2z < C{20% i fioy O = D" du2} . if p=2,
.. 2_ .
(1) ||Hpl| ar—ar < Cmax(ﬁ,l) f(0,1]tp 1 du(t) if 2<p<+4oo,
(iti) || Hul|l av—ar < o5= p(0,1],  if 1<p<2.

Proof. Let 1 < p < 400, p# 2 and f € AP. Then
1 tz P =
sine < [ {[ | il o) me)} auw
/ +f  —Kitk,
0,31 /(3.1

Using the change of variable w = ¢¢(z) = ﬁ, we get

It) :// |1— 11—t )z|P f(l—(iz—t);:)p

G2 [ o5l s dmw).

The image of the unit disc, ¢;(D) = {w € D : |w — 1=%| <
with the interval (—

dm(z)

2 7}, is an open disc

55,1) as diameter. We separate gi)t( ) into:

Aoz{wéqﬁt(D):‘erl_t’— 1—t}

and
1
4;={ 2 < <21,
3= v e€nD): 17t— w+17t =1t
for 1 <j < N, where 2V=1 - < |1+ 5| <2V 1L and, thus,
1
(3.1) 2N><z.

If £ <t <1, then the disc ¢;(D) is covered by AgU A;. In this case, it is trivial
to see that & =< ‘w + - t’ in ¢.(D). Hence, I(t) < C|f||%» - In case t = 1,
= || fl|%s- Therefore,

Ky < Cf|f]lar -

obviously, I(t)

Let now 0 < t < 3. Trying to estimate I(t), we get that, if N > 2, then the sets
Ap, Ay, ..., Ay_ are included in |z| < 1. Using that |f(w)| < C| f[lar ,if |w] < %,
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we get ffAj < CP(2t)P=2||f||%y for j=0,..,N —2. Also, for j = N —1, N, we
get [ [, < C@HP | fI%, . Hence,

N—-2

10 < {3 @2y 15 + G {@ ¥ (2?*4>N} 11 -

Jj=0

If 1 <p<2, from (3.1), I(t)<{1 ==z + Ct?~ p} IfB < & =

K< 00,1 1 fllas
o
£p>2, from (3.1), 1(t) < 5% pbs £ , implying
1 2_
Ko < Cmax(—==.1) [ 657 auft) 1o
P=2 " Jou

Combining the estimates for K7 and K5, we conclude the case p € [1,2)U(2, +00).
If p = 2, then

isunie < {[ [| ] == wof a2} )
//‘/01]1— 1-1)2 (f<1 1- t)z)if(o)) d“(t)r dm(z)}
s{2n+1\/01 a1 |} 1500

/01 // 1—(1-1t) \2’f( _t)z>f(0)‘2dm(2)}2 du(t) .

Now, we set g(z) = M, which implies that ||g]|az < C||f||az. Therefore,

S {J ooy Lo dm(u) }* du(t) < C(0.1] 1f]Lae

W=

the second term is

IN

from which we find

00 1
3
< — .
15u(A)lLae < c{}j — \/0 o dute [} 15l
Finally, the case p = 400 is obvious. O

Now, we consider S, = H,, : A? — AP as a bounded operator and we try to find
the necessary conditions on p. To do this we, formally, define the operator

X 1—¢ ta+1—t ‘s
Su(f)(Z):/(o,l]{(tZ*'l—t)Q/o f(Q)d¢ + mf(tz—kl—t)} du(t)

tz+1—t
N /(071] d%(m% /0 F(Qdc) dpt)

Proposition 3.3. Let 1 < p < 400 and p be a finite positive Borel measure on
(0,1]. Then the operator S, : AP — AP is bounded if and only if p satisfies

1 p/ % 2
S* | Ap—ar < / / du rdrp” +/ 7% du(t) < +oo .
IS5 lar—ar = { | ( MW ) rar}” | (1

In particular, if 2 < p < +o0, then S}, is bounded on AP for all finite positive pu.
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Proof. If p = 400, we see easily, by distinguishing the cases [tz + 1 —¢| > 1 and
tz+1—t| < 1, that the absolute value of the integrand in the formula for S (=)
is less than C || f||ae. Therefore, [|S}(f)[lax < Cu(0,1][|f]la~ and, thus,

u(0, 1) < [[Splla=—a= < Cp(0,1],

where the estimate from below we get from f = 1.
Let 1 < p < +4oo and f € AP. Then

IISZ(f>|ApS{//D’/(O’i] pdm@}é*{//,)‘/i,u

(3.2) =L +1I.
. tz+1 t p
Now I, < f( 1]{ffD dz<tz+1 - )’ } wu(t) and, de-

noting the inner integral by J(t), then, w1th w = 1/)t(2 =tz+1—t, we get

J(t) = tp2//wt(D)‘d‘i)(W /Ow f(()d()‘p dm(w) .

Since 1 < t < 1, the disc ¥;(D) intersects the disc {Jw| < 1} and we consider the
sets Ag={w € ¢y(D):|w| <1} and A; = (D) \ A . Then

Jt):t”_2//A +t1’—2//A = Jo(t) + Ji(t) .

If Jw] < %, then |f(w)| < C| f]la» and, thus, the integrand in Jy(t) is < C'||f|a» ,
implying Jo(t) < CPtP~2 || f||%» - Also,

pecre [ ([ o)+ 1) dmw)

1
SCY[”””_Q/ / ol / FOw)[?dr) dm(w) + C7e=2 | £,
Ay

gcptw/ ([ ], 1#p dmw) ax+cre=2 115,
0 1

and, since [ [y, |F(w)Pdm(w) < C7 | f|mA? , we find Jy(1) < CP=2 ||,
Thus, J(t) < CPtP=2 | f||%, , for + <t <1, and finally, Io < C u(3,1] || f]lar -
Next, working with I, we get

n<{ / / | / o / e an(t)| dm(z>}%
// ‘/ cT tz+1—t -2) /Oltf(é)dc) du(t)‘p dm(z)}%
// ‘/ ~ tz +21_t/1t_zt+1tf(0d€> dpu(t)

(3.3) :In+f12+f13 .

=
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To estimate I3, after using Minkowski’s inequality, we set

G L el

iy t(D)’ﬁu(W " 5@ac)| )

o [ [ e [ o] i)
o2 [ [ [ s dmw

< v 2 / // FOw+ (1= N1 =) dm(w))%d/\}p

dm(z)

+CPP2 | £,
P2 p
= crp2 / (] DI dm(z))"NFdA + 0 |,
D(1— t>\t)
tp—2
<P - v y
<o 2] / ID(1— 203 dA} 11

1
P
vere2{ [ty I, + oo 2 11,
1
3
< CP? | fl%s -
Thus, I13 < Cf(o 1 3 du(t) ||flar - To estimate I;; and I12 we use the well-

known f(¢)=[Jp 1“;;’2 dm(w) , which gives

(3.4) [ r0w= [ [ i dnw).

After trivial calculations, I1o < Cu(0,1] || f]lar -
If p’ = P57, then, from (3.4), we, also, have

s {f [, i o]}
<o{f ([, i o) ()} 7L

< c{/o (/(0 . tir du(t ))” rdr}” 1 FlLas

Combining all estimates, we get

([, o)y [ ot

Assume, conversely, that S, : A? — AP is bounded and consider, first, p > 2.
We change (3.2) to ||S;(f)||Ap > I1—1Is and (3.3) to Iy > I;1—I12—I13. Choosing
f =1, we see that p(0,1] < [|S}[|ar—.ar . This, together with all other estimates,

3.5)  [Sullar—ar <C
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implies 111 < C ||S;[|ar—ar [ fllar . In view of (3.4) and duality, we, now, have

/ / ‘/ e )] )} < C
1] 1— 1_t > P

Restricting D to a Stolz-angle of opening, say 5 , with vertex at 1, we get

{/01</(0 gt+r dpt )>p/ Tdr}i < ClSallar—ar -

If 1 < p < 2, consider the functions fj(z) = 4 ax 0 0<A < £ — 1, which
satisfy S ( fo yt A du(t) fn . This implies f(01 t'=%d u(t) < HS#HAPHAp

and, now, the mequahty 155 (F)lar > Iy — Tz — 13 — 1o, through the same
argument as above gives

{/1</ . du(t))p, rdr}ﬁ +/ 75 du(t) < C IS5 av—av -
o Moyttr ©1] ) H

The last claim in the statement of the theorem is an immediate consequence of
Comment (ii), below. O

Comment : The quantities in Proposition 3.2 and the ”duals” of the quantities
in Proposition 3.3 are, as expected, closely related.

(i) For p = 2, we have, through ||f(0’1] ﬁ d that

O 42

(3.6)
+oo

{Zn+1‘/01 (1—1)" dp(t )‘2}% = {/Ol(/(o’l] tir du(t))zrdr}%+u(o,1] :

(ii) For 1 <p < 2,

u(0,1] < C {/01(/(0 T du(t))”rdr}% +/(0 . o du(t)]
(3.7) < Cmax(\/%, 1) n(0,1]

(iii) Finally, for p > 2,

2 1 P 1 2
tp 1t du(t) < / / du(t)) rdrt” +/ £ dult
/(0,1] Q { 0 ( o1 t+r (¢ )> } (0,1] Q

1 2
3.8 < C'max 7,1/ tr Lt du(t) .
(3.8) (\/m ) o 1u(t)

Lemma 3.1. Let u be a finite Borel measure on (0,1]. If f, g are polynomials, then

J s - | | s,

Proof. The proof is a matter of trivial calculations with f(2) = 2%, g(2) =2!. O

Now, we are in the position to state the following final form of Proposition 3.2.
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Theorem 3.2. Let 1 < p < 400 and p be a finite positive Borel measure on
(0,1]. Then H,, =5, : AP — AP is bounded if and only if the following additional
condition is satisfied:

1 1
1 P > 2
[ Hpllar—ar =< {/ (/ dﬂ(t)) Td?"} +/ e du(t) < 40 ,.
o Moy tt+r 0,1]

Moreover, if 1 < p < 400 and p satisfies the above condition, then the adjoint

of H, =S, : AP — AP is the operator S, : AP APy = %1.

Proof. (i) Let p = +oo. Then, the condition becomes fo 1 t du(t) < 400 and
Proposition 3.2 implies that H,, is bounded on A>.

Conversely, from Hu(l)(z) = f(O,l] Wl—t)z du(t) , we get f(o,l] % du(t) =
lim:c—d* f(O,l] ﬁ dﬂ(t) S ||H/1«HA°°4’A°° .

Let, now, 1 < p < +o0o. Then the condition in the statement of the theorem
implies, through (3.8), (3.9), (3.10) and Proposition 3.2, that H,, is bounded on AP.
Therefore, it only remains to prove the necessity of the condition and that S is
the adjoint of H,,. We assume that H, = S, : A? — A? is bounded and we denote
S, AP — A" its bounded adjoint. From Lemma 3.1, we have that Sp(f)=S5.(f)
for every polynomial f.

(ii) Let 1 <p < 2.

Lemma 3.1 implies that, for each polynomial g(z),

' / / S5(1)(2)9() dm(2)| < 11u(@)lar < ISullar—arllgllar

and, since the polynomials are dense in AP, 1(0,1] = [|S;(1)|| 4»r < [|Spullar—as -
Hence, by (3.9) and Proposition 3.3, S}, : AP — AP is bounded.

In case 1 < p < 2 the polynomials are dense in AP". Therefore, S, 1s the adjoint
of H,, implying that the two operators have the same norm and this subcase is
complete, due to Proposition 3.3.

Let, now, p = 1. To prove that SL = S5}, we consider the following cases:

(o) Let § € (0,1] and 4 =0 in (0, 7).

Then the measure p satisfies the necessary and the sufficient condition for S* to
be bounded on A%. Consider an f € A* C A? and the (C, 1) means on(f) of its
Taylor series. Then oy (f) w [ and, therefore, S}, (on(f)) N S,,(f) in A% . Also,
on(f) — f, implying S3(on(f)) — Si(f) in A* . But, from Lemma 3.1, we get
Silon(f)) = S, (on(f)), and, thus, S;(f) = S.(f) -

(B) For arbitrary § € (0, 1] define the measures ys = p5,1) and vs = ju(o,5). From
case (a), we get S, (f) = S};,(f) and then

15, (f) = Spus (Pllas = [1Susllar— ar [l fllae < Cp(0, 0] [| f]|a
and
1500 = S5, (Pl = 1155, (F)llaw < C0.] [ Fllax -
Letting § — 0, we find Sj; f = 5], f.
(iii) Let p = 2.
Lemma 3.1 implies that, for every polynomial L ISH( Az < 1Sullaz— az | fllaz -
Considering the polynomial fy(z) =3, _, f(o (1 — )"+ du(t) 2" , we get, from
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the end of the proof of Proposition 3.3, that

N
1 2
— )" < by 2 2 < 2 5 2
{;nJr 1‘/(0““(1 t) d“(t)‘ } < C 1S5 (fn)llaz—az < C [|Sullaz— a2l ]l a

Yo 243
e |Su||A2eAz{;n+1\ /m,ﬂ“ —omau)| '}

2. 1
Therefore, {ZN, L‘f(o l](l—t)” du(t)‘ }2 < C |54l a2— 42 and, by Proposi-
s

n=0 n+1

tion 3.2, S, is bounded on A2, From the density of polynomials in A2, we conclude
that S}, is the adjoint of H,.

(iv) Finally, let 2 < p < 400.
Let 0 < A < % —1and fo(2) = 4 o = e+ ("N e A
We take the partial sums sy y of the Taylor series of fy, for which we know that
sx, 5 = fall 4 — O . Since S, is bounded, we find S};(sx,n) = S, (sx,n) — S}, (fr)
in A?". Hence, for each z =z € [0,1), we get Si(san)(@) — S, (fr)(z) .

Due to monotone convergence,

2 (san) (@) — {f (” A= 1) ((1 —t+t2)" +nte(l—t + m)"—l) } dp(t)

n

Therefore, fo 17 % du(t) fa(z) = S),(fr)(z) for all z € [0,1) and, by analytic
L du(t) fr = S(f2) - Hence, [y 2 du(t) < S]] —av

for 0 <A< % —1 and, thus, f(o 1]t%_1 du(t) < [1S),lar—a» -
Prop051t10n 3.3 implies, now, that S} is bounded on AP and, through the density

continuation, f (0.1]

of polynomials in A?, it is the adJomt of H,=S,.
O

Comment: One can, easily, find the exact value of the norm [|H||a»—4» in the
restricted range 4 < p < +00, using Minkowski’s inequality :
P 2 5

| H . (f)] ar _/ // = 2‘f 1—t) ) 0O dm(z)} dpu(t)
/01 //t w)[? dm(w )};t%_l du(t) < /(0,1]t5_1 du(t) [If]lar -

In view of the last inequality in the proof of Theorem 3.2, we get

2 _
ol arar = / B du() .
(0,1]

4. BMOA anpD VMOA

Theorem 4.1. Let p be a finite positive Borel measure on (0,1]. Then T, is
bounded on either BMOA or VMOA if and only if f(o 1 log 1 du(t) < +oo and,

in both cases, its norm is =< f(o 1](1 +log 4) du(t).



22 P. GALANOPOULOS AND M. PAPADIMITRAKIS

Proof. Let [y, log + du(t) < 400 and f € BMOA. By the growth estimate on f,

/ |[f(1—t+1tz)| du(t) < C 1 !
(0,1]

— 0 du(t
(0,1] 81 |1 —t+tz] 1(t) [[fllBroa

<C du(t) || fllBroa < +o0

1
log ————~
©1 t1—1z])
and, hence, T}, f(z) is well-defined.
There exist f1, fo analytic in D with R(f1), R(f2) in L™, f = f1 +ifs + £(0),
f1(0) = f2(0) = 0 and [|f[|Brroa = [[R(f1) [z + [[R(f2) |z + [£(0)] -
Obviously, (T, f;) = T,.(R(f;)), whence,

1T fillBroa < C [T, fi(0)| + C [|[Tu(R(f;)) |l

<C ] [f5 (1 =) du(t) + Cp(0, 1] [R(f;)]| Lo

(0,1

1
<C (1 +10g*) du(t) ||fllBamoa -
(0,1] ¢

Thus, |7, f | sas0a < C i (14108 3) dua(t) |1f |0 -
Now, suppose that 7}, is bounded on BMOA and take f(z) = log -=~. Then

1—2z"
T'uf(O) = f(O,l] log% d,u(t) is finite and f(O,l] log% du(t) <C ||T,1LHBMOA—>BMOA .
Similarly, taking f(z) = 1, we find ©(0,1] < C ||T,||BMoA—BMOA -
To deal with the case of VMOA, assume f(O,l] log% du(t) < +oo.
From Proposition 2.3, we know that 7}, maps Ao into A¢ and, therefore, into
VMOA. Since T}, is bounded on BMOA and Ay is dense in VMOA, we get that
it is bounded on VMOA with no larger norm.

For the opposite, we take fc.(z) = log 1+l—z € VMOA, and then let e — 0. O

Theorem 4.2. Let p be a finite positive Borel measure on (0,1]. Then H, =S,
is bounded on either BMOA or VMOA if and only if f(o I ) & oo .

t
ap(t)
t

Moreover, in both cases, the norm of the operator is = f(o 1

Proof. Assume f(o I d“t(t) < +oo and take f € BMOA.
We define g(z) = 2f(z) € BMOA and use the decomposition g = g1 + igo with
g; analytic in D, g;(0) = 0 and ||gllBmoa = [[R(g1)l| L~ + [|R(g2) [l -

Since |1_(372_t)2| < |z|, we see that H,(f)(z) = %f(o,l] g(l—(iiz—t)z) dut(t) is well-

defined, for every z € D, and, as in the proof of Theorem 5.1,
[Hu(NllBroa < C [Hu(f)(0)] +C [|zHu(f)l Broa

d
<cuo 170140 [ B lglawor<c |

dutt)

. I fllBaroa -

)

Assume H,, is bounded on BMOA, take f(z) = log =~ and z € [0,1). Then,

1—=

/w,u T 0% ) = m,() )

< C'log

1—=1 HH#”BMOA—»BMOA .
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ReStI‘iCtiIlg to (m, 1], we find f(m 10t dﬂ( ) < C HHu||BMOA—>BMOA
and it only remains to let x — 1— .

If f(o,l] d“t(t) < 400, then, from Theorem 2.3, H,, maps Ay into itself. Since Ag
is dense in VMOA and H,, is bounded on BMOA, we have that it is bounded on
VMOA with no increase in norm.

For the opposite, take f.(z) = log

€ VMOA and let € — 0+ . O

1
1+e—z

Theorem 4.3. Let 11 be a finite positive Borel measure on (0,1]. Then A, is
bounded on BMOA if and only if f(O,l] log% du(t) < +oo.

In this case: A, =T, on BMOA.

Ezactly the same are true for the space VMOA.

Proof. We employ the notation in the proof of Theorem 2.4.
We assume f(o 1 log% du(t) < +oo and take f € BMOA. It is easy to see that

(4.1) lsnl < C ||[flBraoa logn .

In fact, write f = f1 +ifo + f(0) with f1, fo analytic in D, R(f1), R(f2) € L,
f1(0) = f2(0) = 0 and || f[|Braroa = [f(0)[ + [R(f1)llLe + [[R(f2)lzo . Then,

[sn] < [£(0 |+|Zf1 (&) + > falk)
k=1
2T ) d0 n 2 ) da
—ik0 —ik6
o>|+\]§1£ RO T+ 30 [ RO
< 1F0)] + CURU)I = + IR(f2) | =) logn < C || flpaoa logn .

n—=k
We get ¢y, i logn < C(k){f(&ﬁ) log 1 du(t)+logn n*e™ v (0, l]} — 0 from
the estimate that gave us (2.4) and this, together with (4.1), implies

(4.2) Cn,Sn — 0.
From (2.5), |enk — cnt1kl < nke — ensre + 2C(E nk—1 f(o )t du(t) and,
7n+1
using (5.1),
N-1
Z ‘Cn,k - Cn+1,k||sn‘
n=k
N-1 N-1
< C(k) Hf”BMOA{ > (enk = cnyrn)logn+ > 0k logn/ tk du(t)}
n=~k n=k (O’ni-%—l)

Cn,k T Ck,k log k

+oo
n
< C(k) fllparoa{ " log ——
n=~k

+oo
k k—1
+ /(O ; 5 " nF " logn X(0,%7) (%) du(t)}

n=~k
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“+o00
1
< C(k) ”fHBMOA{Z - (Z) /(O ; (1 — )" du(t) + . log k

n=k
(%)
—|—/ tk n*~Llogn du(t)
(0,1] Z }

n=k

1
< C(0) [ llmsroa{n(0. 1)+ cuslogh+ [ logg du(t)} < +oc.

(0,1]

Therefore, the series Z::;C (Cn,k — Cnt1,k)sn coverges and (4.2) together with sum-
mation by parts gives

+oo
(4.3) E Cn kln = E (Cnk — Cnt1,k)Sn — ClkSk—1 -
n=~k

We shall need the estimates: 3, t"logn < OS5 t" S0 L = ;< log 12
and 30/ nt"logn < &+ & log
Taking any p € [0,1), we have, from (4.1) and the first of these estimates,

400 n
3N (enn = enrrx)p"lsnl
n=0 k=0
“+oo
—§j/ (10—t 410" (0= p) + ) du(D)s
scnﬂmMOA/ {61 =)+~ p) - log
0,1] t(l—p) “t1-p)
(4.4) Ftp+ tp——log — }d(t)<+
. o .
pttpy—p sy du

From (2.5), (4.1) and the second of the estimates,

400 oo 400 +oo

S5 sl <20 (") [ A0 sl
k=0n=~k k=1n=k 0,1]
tp RS
= (L=t+tp)" —t"p")[sn| du(?t)
=[x )Isn
+oo
< [ todn o) s dutt
(O | ——
@5)  <Clflawon [ to{ii+ i ton b du) < +
. < BMOA P m 00 .
01  (tLl=p) td=p) Tt1-p)
Finally, from (4.4) and (4.5), we get
+00 400 +oo n
Z Z |Cn,k - Cn+1,k||5n|pk < Z Z(Cn,k - Cn+1,k)pk|5n‘
k=0n=~k n=0 k=0
+0o0 +o0

—|—22:z:rn7;€|sn|plC < 4o .

k=0 n=k
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Therefore, using (4.3) and a change of the order of summation,

+oo 400 +oo
Z(Z Cn,kan)zk = / D an(l—t+t2)" du(t) = Tu(f)(z) -
k=0 n=k 0,11 , =

To prove the necessity part of the theorem, consider f(z) = log 1; and observe

that the first coefficient of A,,(f) is 3.2 4 © 1](1 —t)"du(t) = f(o 1 log 1 dpuf(t) .

n=1n
Since we have proved that the condition f(o 1 log + du(t) < +oc implies A, =T,
on BMOA, we can use Theorem 4.1 to prove that, under the same condition, A,
is bounded on VMOA.

The necessity is proved by considering f(z) = log and lettinge — 0+ . O

_1
14e—2z

5. THE BLOCH AND LITTLE-BLOCH SPACES

The proofs of the next two theorems, although they are mildly involved, do not
present any new ideas and it seems better to be omitted. They just use the standard
growth estimates of functions in the Bloch space B :

PO <Clfls . 1)< Clog— + 1)1 flls

1
1— 2]

Theorem 5.1. Let p be a finite positive Borel measure on (0,1]. Then H, =S,
is bounded on B if and only if

1
|HullB—B x/ n du(t) < 4oo .
(0’1]

The same condition is necessary and sufficient for H, to be bounded on By.

Theorem 5.2. Let p be a finite positive Borel measure on (0,1]. Then T, is
bounded on both B and By if and only if f(o 1 log% du(t) < +oo .

Moreover, in both cases, its norm is equivalent to f(o 1] (1 + log %) du(t) .

Theorem 5.3. Let p1 be a finite positive Borel measure on (0,1]. Then A, is
bounded on B if and only if f(O,l] 1og% du(t) < +oo.

In this case: A, =T, on B.

Ezactly the same are true for the space By.

Proof. The proof is identical to the proof of the analogous result for the spaces
BMOA and VMOA, provided we prove that, for every f(z) = Z:i% a2 € B:

|sn| = lao + -+ + an| < C || f|| 5 logn.

It is true (see [2]) that, for every g(z) = 3720 b,2" analytic in D

<2|flls llgllr,

r—1—

—+oo
lim E anb,r"
=0

where the last norm is defined by ||g||7 = [g(0)| + 5= fol f027T|g’(rei9)| dfdr .

Hence, it is enough to consider the function g(z) = Y _, 2k = 1_12_?1 and prove

that ||g|]7 < Clogn . This is, probably, known, but, since we have no reference for
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it, we present a quick proof.

zn0| n‘ n zn@ n+1ei(n+1)9‘
HgHT<1—|— |1_r610|2 dodr + T redp dodr

:1—|—A+B.

Now, B=12 fol oy HTle”ﬂ dfdr < Cn fol " (1 + log ﬁ) dr < Clogn .
Also

/ /(k-i-l)h |1 zn9| zn0|
dodr + ~ / / dodr
— |1_ za|2 |1_reza|2
<C dédr +C | i: aodr + <
o ) e e [T

<Cl e
_Cogn+C’// /M|1— ap dt dodr

<Clogn+ — / / 1 5 dtdr < Clogn
—r)

and the proof is finished. ([

6. THE DIRICHLET SPACE

Through the form < f,g >, = : Oan n , defined for f(z) = Z::(’) a2 € D
and g(z) = Y22 b,2" € A% a duality relation between the Dirichlet space D and

the Bergman space A? is introduced. Clearly, | < f,g >« | <||flp llgllaz -
If either H,, is bounded on D or A, is bounded on A2, then

< Hll(f)ag >=< f7AlL(g) >x

where the necessary change in the order of summation is justified from

Z(chm\)w < |H, Z|an|z Vnllglaz < 1 Hullo—plflp gl

n=0 k=0

in the first case and from
+oo 400 “+o00

SO corloulYlanl < 14 bal=) ez 11D < [ Allaz a2 lgllaz 11

k=0 n=k n=0
in the second case. In the same manner we see that the same equality holds if either
H, is bounded on A2 or A, is bounded on D.

From these dualities and from Theorems (3.1) and (3.2) together with Comment
(1) in Section 3, we get

Theorem 6.1. Let p be a finite positive Borel measure on (0,1]. Then,
1. H, =5, is bounded on D if and only if

1
[Hllo—p = [ 5 duft) < +00
(0,1]
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2. A, =T, is bounded on D if and only if

+oo 1
1 AN
A _p = ‘ 1-t)"d t‘ < 400 .
|Aullp—p {n§_0n+1 /(071]( )" dul(t) } +

7. SOME FINAL COMMENTS

It might be interesting to explore the action of Hausdorff and quasi-Hausdorff
matrices and their integral analogues on the spaces HP, when 0 < p < 1, and, also,
their boundedness as operators : HP — HY when p # g. Besides some conjectures,
we have no positive result in this direction.

For the Lipschitz spaces A, 0 < a < 1, we are able to prove, that H,, is bounded
on A, if and only if f(OJ] it dp(t) < +oo and that A, is bounded on A, for all
1 . The proofs of these results contain no new ideas or techniques and, hence, we
omit them.
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