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for arbitrary xm, yn ∈ C.
Hilbert had given the value 2π for the constant C, while the best value π for C

was found by Schur (1911).
There are two generalizations of Hilbert’s inequality:∣∣∣ ∑
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where {λk} is a strictly increasing real sequence such that |λm − λn| ≥ δ > 0 for
m 6= n, and ∣∣∣ ∑
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where {λk} is a strictly increasing real sequence and δk = minl,l 6=k |λl − λk|.
Both inequalities were proven by Montgomery and Vaughan in [2]. For (1) they

calculated the best value π of the constant C. For (2) they gave the value 3π
2 for

C, but this is not the best possible. The conjecture is that the best value of C for
(2) is also π. If this is true, (1) is a particular case of (2).

For the recent history of these inequalities see [1].
In this note we shall prove the continuous analogue of (2) with the best value π

of C. That is∣∣∣∫∫
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where K : R → R has strictly positive continuous derivative and f, g have compact
support in R.

We define F = f√
K′ and G = g√

K′ and we get the equivalent∣∣∣∫∫
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By the Cauchy-Schwarz inequality it suffices to prove∫
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We change variables: ξ = K(x), x = L(ξ), η = K(y), y = L(η) and G∗(ξ) =
G(x), G∗(η) = G(y). Therefore,∫
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The next to last equality is just the isometric property of the Hilbert transform
Hk(ξ) = P.V. 1

π

∫
R

k(η)
ξ−η dη .
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