A NOTE ON A GENERALIZATION OF HILBERT'S INEQUALITY

M. PAPADIMITRAKIS

Hilbert's inequality is

$$
\left|\sum_{(m, n), m \neq n} \frac{x_{m} y_{n}}{m-n}\right| \leq C\left(\sum_{m}\left|x_{m}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{n}\left|y_{n}\right|^{2}\right)^{\frac{1}{2}}
$$

for arbitrary $x_{m}, y_{n} \in \mathbf{C}$.
Hilbert had given the value 2π for the constant C, while the best value π for C was found by Schur (1911).

There are two generalizations of Hilbert's inequality:

$$
\begin{equation*}
\left|\sum_{(m, n), m \neq n} \frac{x_{m} y_{n}}{\lambda_{m}-\lambda_{n}}\right| \leq \frac{C}{\delta}\left(\sum_{m}\left|x_{m}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{n}\left|y_{n}\right|^{2}\right)^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

where $\left\{\lambda_{k}\right\}$ is a strictly increasing real sequence such that $\left|\lambda_{m}-\lambda_{n}\right| \geq \delta>0$ for $m \neq n$, and

$$
\begin{equation*}
\left|\sum_{(m, n), m \neq n} \frac{x_{m} y_{n}}{\lambda_{m}-\lambda_{n}}\right| \leq C\left(\sum_{m} \frac{\left|x_{m}\right|^{2}}{\delta_{m}}\right)^{\frac{1}{2}}\left(\sum_{n} \frac{\left|y_{n}\right|^{2}}{\delta_{n}}\right)^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

where $\left\{\lambda_{k}\right\}$ is a strictly increasing real sequence and $\delta_{k}=\min _{l, l \neq k}\left|\lambda_{l}-\lambda_{k}\right|$.
Both inequalities were proven by Montgomery and Vaughan in [2]. For (1) they calculated the best value π of the constant C. For (2) they gave the value $\frac{3 \pi}{2}$ for C, but this is not the best possible. The conjecture is that the best value of C for (2) is also π. If this is true, (1) is a particular case of (2).

For the recent history of these inequalities see [1].
In this note we shall prove the continuous analogue of (2) with the best value π of C. That is

$$
\left|\iint_{\mathbf{R} \times \mathbf{R}} \frac{f(x) g(y)}{K(x)-K(y)} d x d y\right| \leq \pi\left(\int_{\mathbf{R}} \frac{|f(x)|^{2}}{K^{\prime}(x)} d x\right)^{\frac{1}{2}}\left(\int_{\mathbf{R}} \frac{|g(y)|^{2}}{K^{\prime}(y)} d y\right)^{\frac{1}{2}}
$$

where $K: \mathbf{R} \rightarrow \mathbf{R}$ has strictly positive continuous derivative and f, g have compact support in \mathbf{R}.

We define $F=\frac{f}{\sqrt{K^{\prime}}}$ and $G=\frac{g}{\sqrt{K^{\prime}}}$ and we get the equivalent

$$
\left|\iint_{\mathbf{R} \times \mathbf{R}} \frac{\sqrt{K^{\prime}(x)} \sqrt{K^{\prime}(y)}}{K(x)-K(y)} F(x) G(y) d x d y\right| \leq \pi\|F\|_{2}\|G\|_{2} .
$$

By the Cauchy-Schwarz inequality it suffices to prove

$$
\int_{\mathbf{R}}\left|\int_{\mathbf{R}} \frac{\sqrt{K^{\prime}(y)}}{K(x)-K(y)} G(y) d y\right|^{2} K^{\prime}(x) d x \leq \pi^{2}\|G\|_{2}^{2}
$$

Date: March 12, 1997.

We change variables: $\xi=K(x), x=L(\xi), \eta=K(y), y=L(\eta)$ and $G^{*}(\xi)=$ $G(x), G^{*}(\eta)=G(y)$. Therefore,

$$
\begin{aligned}
\int_{\mathbf{R}}\left|\int_{\mathbf{R}} \frac{\sqrt{K^{\prime}(y)}}{K(x)-K(y)} G(y) d y\right|^{2} K^{\prime}(x) d x & =\int_{\mathbf{R}}\left|\int_{\mathbf{R}} \frac{\sqrt{L^{\prime}(\eta)} G^{*}(\eta)}{\xi-\eta} d \eta\right|^{2} d \xi \\
& =\pi^{2} \int_{\mathbf{R}}\left|\sqrt{L^{\prime}(\eta)} G^{*}(\eta)\right|^{2} d \eta \\
& =\pi^{2}\|G\|_{2}^{2}
\end{aligned}
$$

The next to last equality is just the isometric property of the Hilbert transform $H k(\xi)=P . V \cdot \frac{1}{\pi} \int_{\mathbf{R}} \frac{k(\eta)}{\xi-\eta} d \eta$.

References

[1] H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, CBMS 84 (1990), Amer. Math. Soc. Publications.
[2] H. L. Montgomery, R. C. Vaughan, Hilbert's inequality, J. London Math. Soc. (2) 8 (1974), 73-82.

Department of Mathematics, University of Crete, 71409 Heraklion, Greece

