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Chapter 1

o-algebras

1.1 o-algebras.

Definition 1.1 Let X be a non-empty set and ¥ a collection of subsets of X.
We call ¥ a o-algebra of subsets of X if it is non-empty, closed under
complements and closed under countable unions. This means:
(i) there exists at least one A C X so that A € 3,
(i1) if A€ X, then A° € &, where A° =X \ A, and
(i4i) if A, € X for alln € N, then Uf> A, € 3.

The pair (X,X) of a non-empty set X and a o-algebra ¥ of subsets of X is
called a measurable space.

Proposition 1.1 Every o-algebra of subsets of X contains at least the sets ()
and X, it is closed under finite unions, under countable intersections, under
finite intersections and under set-theoretic differences.

Proof: Let ¥ be any o-algebra of subsets of X.

(a) Take any A € ¥ and consider the sets A3 = A and A4,, = A€ for all n > 2.
Then X = AU A® = U/ A, € ¥ and also | = X°¢ € ¥.

(b) Let Ay,...,Axy € X. Consider A4, = Ay for all n > N and get that
UN_ A, =UtNA, e X

(c) Let A, € ¥ for all n. Then N> A, = (U2 A4)¢ € .

(d) Let Aq,...,Ay € ¥. Using the result of (b), we get that N2 A, =
(UY_ A € .

(

e) Finally, let A, B € X.. Using the result of (d), we get that A\B = ANB° € ¥.
Here are some simple examples.

Examples

1. The collection {0, X'} is a o-algebra of subsets of X.

2. If E C X is non-empty and different from X, then the collection {f), E, E¢, X }
is a o-algebra of subsets of X.



3. P(X), the collection of all subsets of X, is a g-algebra of subsets of X.

4. Let X be uncountable. The {A C X | A is countable or A° is countable} is
a o-algebra of subsets of X. Firstly, () is countable and, hence, the collection is
non-empty. If A is in the collection, then, considering cases, we see that A€ is
also in the collection. Finally, let A,, be in the collection for all n € N. If all
Ay’s are countable, then U"> A, is also countable. If at least one of the AS’s,
say AS , is countable, then (Uf2]A,)¢ C AS is also countable. In any case,

oo

U2 A,, belongs to the collection.

The following result is useful.

Proposition 1.2 Let ¥ be a o-algebra of subsets of X and consider a finite
sequence { A, }N_ or an infinite sequence {A,} in X. Then there exists a finite
sequence {B,}Y)_, or, respectively, an infinite sequence {B,} in ¥ with the
properties:

(i) B, C A, foralln=1,...,N or, respectively, all n € N.

(i) UN_, B,, = UN_, A,, or, respectively, U2 B,, = U2 A,,.

(iii) the B,,’s are pairwise disjoint.

Proof: Trivial, by taking By = Ay and By = A \ (A1 U--- U Ai_4) for all
k=2,...,N or, respectively, all k = 2,3,....

1.2 Generated o-algebras.

Proposition 1.3 The intersection of any o-algebras of subsets of the same X
1s a o-algebra of subsets of X.

Proof: Let {X;}ics be any collection of o-algebras of subsets of X, indexed by an
arbitrary non-empty set I of indices, and consider the intersection ¥ = N;cr3;.

Since ) € X; for all i € I, we get ) € ¥ and, hence, ¥ is non-empty.

Let A € 3. Then A € %; for all i € I and, since all X;’s are o-algebras,
A€ €Y, for all ¢ € I. Therefore A° € X.

Let A, € X for allmn € N. Then A, € ¥; foralli € [ and all n € N
and, since all ¥;’s are o-algebras, we get UZﬁAn € Y; for all « € I. Thus,
U A, €3

Definition 1.2 Let X be a non-empty set and £ be an arbitrary collection of
subsets of X. The intersection of all o-algebras of subsets of X which include
& is called the o-algebra generated by £ and it is denoted by X(E). Namely

(&) =n{Z| X is a o-algebra of subsets of X and € C X}.

Note that there is at least one o-algebra of subsets of X which includes £ and
this is P(X). Note also that the term o-algebra used in the name of X(€) is
justified by its definition and by Proposition 1.3.

Proposition 1.4 Let £ be any collection of subsets of the non-empty X. Then
Y(&) is the smallest o-algebra of subsets of X which includes £. Namely, if 3
is any o-algebra of subsets of X such that € C X, then XL(E) C X.
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Proof: 1If ¥ is any o-algebra of subsets of X such that £ C ¥, then X is one of
the o-algebras whose intersection is denoted 3(€). Therefore ¥(&) C .

Looking back at two of the examples of o-algebras, we easily get the following
examples.

Examples.

1. Let E C X and E be non-empty and different from X and consider £ = {E}.
Then X(€) = {0, E,E,X}. To see this just observe that {0, F,E°, X} is a
o-algebra of subsets of X which contains E and that there can be no smaller
o-algebra of subsets of X containing F, since such a o-algebra must necessarily
contain (), X and E° besides E.

2. Let X be an uncountable set and consider £ = {A C X | A is countable}.
Then ¥(€) = {A C X|A is countable or A° is countable}. The argument is the
same as before. {A C X|A is countable or A€ is countable} is a o-algebra of
subsets of X which contains all countable subsets of X and there is no smaller
o-algebra of subsets of X containing all countable subsets of X, since any such
o-algebra must contain all the complements of countable subsets of X.

1.3 Algebras and monotone classes.

Definition 1.3 Let X be non-empty and A a collection of subsets of X. We call
A an algebra of subsets of X if it is non-empty, closed under complements
and closed under unions. This means:

(i) there exists at least one A C X so that A € A,

(ii) if A€ A, then A° € A and

(i1i) if A,B € A, then AUB € A.

Proposition 1.5 Every algebra of subsets of X contains at least the sets ()
and X, it is closed under finite unions, under finite intersections and under
set-theoretic differences.

Proof: Let A be any algebra of subsets of X.

(a) Take any A € A and consider the sets A and A°. Then X = AU A € A
and then ) = X© € A.

(b) Tt is trivial to prove by induction that for any n € N and any A;,..., A4, € A
it follows A;U---U A, € A.

(c) By the result of (b), if Aq,..., A, € A, then N}_, Ay = (U}_,AL)° € A.

(d) If A, B € A, using the result of (c), we get that A\ B=ANB° € A.

Examples.

1. Every o-algebra is also an algebra.

2. If X is an infinite set then the collection {A C X | A is finite or A€ is finite}
is an algebra of subsets of X.

If (A,,) is a sequence of subsets of a set X and A4,, C A,,41 for all n, we say
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that the sequence is increasing. In this case, if A = US> A,, we write
A, TA.

If A,41 C A, for all n, we say that the sequence (A4,,) is decreasing and, if
also A = N> A, we write

A, | A

Definition 1.4 Let X be a non-empty set and M a collection of subsets of X .
We call M a monotone class of subsets of X if it is closed under countable
increasing unions and closed under countable decreasing intersections. That is,
if Aj,Ag,... € M and A, T A, then A € M and, if A1,As,... € M and
A, | A, then Ae M.

It is obvious that every o-algebra is a non-empty monotone class.

Proposition 1.6 The intersection of any monotone classes of subsets of the
same set X is a monotone class of subsets of X.

Proof: Let {M,}icr be any collection of monotone classes of subsets of X,
indexed by an arbitrary non-empty set I of indices, and consider the intersection
M = NierM;.

Let Ay, As,... € M with A, T A. Then A,, € M, foralli € I and alln € N
and, since all M;’s are monotone classes, we get that A € M; for all ¢ € I.
Therefore A € M.

The proof in the case of a countable decreasing intersection is identical.

Definition 1.5 Let X be a non-empty set and £ be an arbitrary collection of
subsets of X. Then the intersection of all monotone classes of subsets of X
which include £ is called the monotone class generated by £ and it is
denoted by M(E). Namely

M(E) =N{M| M is a monotone class of subsets of X and &€ C M}.

There is at least one monotone class including £ and this is P(X). Also note
that the term monotone class, used for M (), is justified by Proposition 1.6.

Proposition 1.7 Let £ be any collection of subsets of the non-empty X. Then
M(E) is the smallest monotone class of subsets of X which includes £. Namely,
if M is any monotone class of subsets of X such that € C M, then M(E) C M.

Proof: If M is any monotone class of subsets of X such that £ C M, then M
is one of the monotone classes whose intersection is M(E). Thus, M(E) C M.

Theorem 1.1 Let X be a non-empty set and A an algebra of subsets of X.
Then M(A) = 2(A).

Proof: %(A) is a o-algebra and, hence, a monotone class. Since A4 C X(A),
Proposition 1.7 implies M(A) C X(A).
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Now it is enough to prove that M(A) is a o-algebra. Since A C M(A),
Proposition 1.4 will immediately imply that X(A4) C M(A) and this will con-
clude the proof.

M(A) is non-empty because ) € A C M(A).

Fix any A € A and consider the collection M4 = {B C X |AUB € M(A)}.

It is very easy to show that M4 includes A and that it is a monotone class
of subsets of X. In fact, if B € A then AU B € A and thus B € M 4. Also, if
Bi,Bsy,...€¢ My and B, T B, then AUB{,AUB,,... € M(.A) and AUB, T
AU B. Since M(A) is a monotone class, we find that AU B € M(A). Thus,
B € M4 and M 4 is closed under countable increasing unions. In a similar way
we can prove that M4 is closed under countable decreasing intersections and
we conclude that it is a monotone class.

Proposition 1.7 implies that M(A) C M 4. This means that:

i. AUB e M(A) for all A€ Aand all Be€ M(A).

Now fix any B € M(A) and consider Mp ={AC X|AUB € M(A)}. As
before, Mg is a monotone class of subsets of X and, by i, it includes A. Again,
Proposition 1.7 implies M(A) C M p, which means:

ii. AUB e M(A) for all A € M(A) and all B € M(A).

We consider the collection M = {A C X |A¢ € M(A)}. As before, we
can show that M is a monotone class of subsets of X and that it includes A.
Therefore, M(A) C M, which means:

iii. A€ M(A) for all A € M(A).

It is implied by ii and iii that M (A) is closed under finite unions and under
complements.

Now take Ay, As, ... € M(A) and define B,, = A; U---UA,, for all n. From
ii we have that B,, € M(A) for all n and it is clear that B,, C B,,4+1 for all n.
Since M(.A) is a monotone class, U2 A, = U2 B, € M(A).

Hence, M(A) is a o-algebra.

1.4 Restriction of a o-algebra.

Proposition 1.8 Let ¥ be a o-algebra of subsets of X and Y C X be non-
empty. If we denote
YIY={ANnY|Ae X},

then XY is a o-algebra of subsets of Y.
In case Y € 3, we have XY ={ACY|AeX}.

Proof: Since §) € ¥, we have that ) =0 NY € X]Y.

If BeX]Y, then B=ANY for some A € X. Since X \ A € X, we get that
Y\B=(X\A)NY ex]Y.

If By, Ba,... € X]Y, then, for each k, By = Ay NY for some Ay € X. Since
U2 Ay € 3, we find that U/ 2By, = (U2 4,) NY € XY
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Now let Y € ¥. If B € X]Y, then B = ANY for some A € ¥ and,
hence, B C Y and B € ¥. Therefore B € {C C Y |C € X}. Conversely, if
Be{CCY|C € X}, then BCY and B € ¥. We set A = B and, thus,
B=ANY and A € X. Therefore B € XY

Definition 1.6 Let X be a o-algebra of subsets of X and let Y C X be non-
empty. The o-algebra XY, defined in Proposition 1.8, is called the restriction
of ¥ onY.

In general, if £ is any collection of subsets of X and Y C X, we denote
ElY={ANnY |Aec&}
and call £]Y the restriction of £ on Y.

Theorem 1.2 Let € be a collection of subsets of X and Y C X be non-empty.
Then
LENY) =2,

where X(E1Y) is the o-algebra of subsets of Y generated by 1Y .

Proof: It B € £]Y, then B = ANY for some A € £ C 3(€) and, thus,
B € X(€)]Y. Hence, £1Y C X(€)]Y and, since, by Proposition 1.8, 3(€)Y is
a o-algebra of subsets of Y, Proposition 1.4 implies 3(£]Y) C 2(€)]Y.

Now, define the collection

S={ACX|ANY € Z(E]Y)}.

We have that ) € 3, because 0NY =0 € Z(E]Y).

If A e X, then ANY € X(E1Y). Therefore, X\ A € ¥, because (X \A)NY =
Y\(ANY) e Z(&E]Y).

If Ay, As,... € X, then Ay NY, A2 NY,... € X(£]Y). This implies that
(U5 A) NY = U (A NY) € B(E]Y) and, thus, US> Ay € 3.

We conclude that ¥ is a o-algebra of subsets of X.

If Ae & then ANY € £]Y C X(£]Y) and, hence, A € . Therefore, £ C 2
and, by Proposition 1.4, X(£) C ¥. Now, for an arbitrary B € X(£)]Y, we have
that B = ANY for some A € 3(€) C ¥ and, thus, B € 3(£1Y). This implies
that 2(€)]Y C Z(E]Y).

1.5 Borel o-algebras.

Definition 1.7 Let X be a topological space and T the topology of X, i.e. the
collection of all open subsets of X. The o-algebra of subsets of X which is
generated by T, namely the smallest o-algebra of subsets of X containing all
open subsets of X, is called the Borel o-algebra of X and we denote it Bx :

Bx =%(7), T the topology of X.

The elements of Bx are called Borel sets in X and Bx is also called the
o-algebra of Borel sets in X.

12



By definition, all open subsets of X are Borel sets in X and, since By is a
o-algebra, all closed subsets of X (which are the complements of open subsets)
are also Borel sets in X. A subset of X is called a Gs-set if it is a countable
intersection of open subsets of X. Also, a subset of X is called an F,-set if it
is a countable union of closed subsets of X. It is obvious that all Gs-sets and
all F,-sets are Borel sets in X.

Proposition 1.9 If X is a topological space and F is the collection of all closed
subsets of X, then Bx = 3(F).

Proof: Every closed set is contained in (7). This is true because 3(7) contains
all open sets and hence, being a o-algebra, contains all closed sets. Therefore,
F C X(T). Since £(7) is a o-algebra, Proposition 1.4 implies ¥(F) C (7).

Symmetrically, every open set is contained in 3(F). This is because X(F)
contains all closed sets and hence, being a g-algebra, contains all open sets (the
complements of closed sets). Therefore, T C X(F). Since X(F) is a o-algebra,
Proposition 1.4 implies (7)) C X(F).

Therefore, X(F) = X(T) = Bx.

If X is a topological space with the topology 7 and if Y C X, then, as is well-
known (and easy to prove), the collection 7|Y = {UNY |U € T} is a topology
of Y which is called the relative topology or the subspace topology of Y.

Theorem 1.3 Let X be a topological space and let the non-empty Y C X have
the subspace topology. Then
By = Bx]Y.

Proof: If T is the topology of X, then 7Y is the subspace topology of Y.
Theorem 1.2 implies that By = 3(7Y) = X(7)]Y = Bx Y.

Thus, the Borel sets in the subset Y of X (with the subspace topology of Y)
are just the intersections with Y of the Borel sets in X.

Examples of topological spaces are all metric spaces of which the most fa-
miliar is the euclidean space X = R"™ with the usual euclidean metric or even
any subset X of R™ with the restriction on X of the euclidean metric. Because
of the importance of R™ we shall pay particular attention on Br«.

The typical closed orthogonal parallelepiped with azxis-parallel edges is a set of
the form @ = [a1,b1] X - -+ X [an, by, the typical open orthogonal parallelepiped
with axis-parallel edges is a set of the form R = (a1, b1)X- - -X(an, by,), the typical
open-closed orthogonal parallelepiped with axis-parallel edges is a set of the form
P = (a1,b1] %+ - x (an, b,] and the typical closed-open orthogonal parallelepiped
with axis-parallel edges is a set of the form T = [a1,b1) X -+ X [an, byp). More
generally, the typical orthogonal parallelepiped with axis-parallel edges is a set
S, a cartesian product of n bounded intervals of any possible type. In all cases
we consider —oo < a; < b; < 400 for all j =1,...,n and, hence, all orthogonal
parallelepipeds with axis-parallel edges are bounded sets in R".
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If n = 1, then the orthogonal parallelepipeds with axis-parallel edges are
just the bounded intervals of all possible types in the real line R. If n = 2, then
the orthogonal parallelepipeds with axis-parallel edges are the usual orthogonal
parallelograms of all possible types with axis-parallel sides.

Since orthogonal parallelepipeds with axis-parallel edges will play a role in
much of the following, we agree to call them, for short, n-dimensional inter-
vals or intervals in R".

Lemma 1.1 All n-dimensional intervals are Borel sets in R".

Proof: For any j = 1,...,n, a half-space of the form {z = (z1,...,2,)|z; <b;}
or of the form {« = (x1,...,2,)|z; < b;} is a Borel set in R™, since it is an open
set in the first case and a closed set in the second case. Similarly, a half-space of
the form {x = (z1,...,2,) | a; < x;} or of the form {x = (z1,...,2,) | a; < z;}
is a Borel set in R™. Now, every interval S is an intersection of 2n of these
half-spaces and, therefore, it is also a Borel set in R"™.

Proposition 1.10 If £ is the collection of all closed or of all open or of all
open-closed or of all closed-open or of all intervals in R™, then Brn = %(E).

Proof: By Lemma 1.1 we have that, in all cases, £ C Bgrn. Proposition 1.4
implies that (&) C Bgn.

To show the opposite inclusion consider any open subset U of R"™. For every
x € U find a small open ball B, centered at x which is included in U. Now,
considering the case of £ being the collection of all closed intervals, take an
arbitrary @, = [a1,b1] X -+ X [an, by] containing x, small enough so that it is
included in B, and hence in U, and with all a4,...,a,,b1,...,b, being rational
numbers. Since z € Q. C U for all x € U, we have that U = U,cpyQ,. But the
collection of all possible @,’s is countable (!) and, thus, the general open subset
U of R™ can be written as a countable union of sets in the collection £. Hence
every open U belongs to ¥(€) and, since () is a o-algebra of subsets of R™
and Brr is generated by the collection of all open subsets of R"™, Proposition
1.4 implies that Br» C X(&).

Of course, the proof of the last inclusion works in the same way with all
other types of intervals.

As we said, the intervals in R™ are cartesian products of n bounded intervals
in R. If we allow these intervals in R to become unbounded, we get the so-called
generalized intervals in R™, namely all sets of the form I; x --- x I,,, where
each I; is any, even unbounded, interval in R. Again, we have the subcollections
of all open or all closed or all open-closed or all closed-open generalized intervals.
For example, the typical open-closed generalized interval in R"™ is of the form
P = (a1,01] X -+ X (an,by], where —co < a; < b; < 400 for all j. The
whole space R" is an open-closed generalized interval, as well as any of the half
spaces {z = (z1,...,2,)|2z; < b;} and {& = (21,...,2,)|a; < z;}. In fact,
every open-closed generalized interval is, obviously, the intersection of 2n such
half-spaces.
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Proposition 1.11 The collection A = {Py U---U Py |k € N, Py,..., Py are
pairwise disjoint open-closed generalized intervals in R™} is an algebra of sub-
sets of R™.

In particular, the following are true:

(i) The intersection of two open-closed generalized intervals is an open-closed
generalized interval.

(ii) For all open-closed generalized intervals P, Py, ..., P, there are pairwise dis-
joint open-closed generalized intervals Py, ..., P, so that P\ (PLU---UP,,) =
PlU---UP.

(iii) For all open-closed generalized intervals Py, ..., Py, there are pairwise dis-

joint open-closed generalized intervals Py, ..., P} so that P, U---UP,, = P[ U
U P]é'

Proof: The intervals (a,b] and (a’, b’] are not disjoint if and only if a” < b, where
a’ = max{a,a’} and b’ = min{b,b'}. In case a” < V”, then (a,b] N (a’,b] =
(a",b"]. Now if P = (a1,b1] X -+ x (an,by) and P' = (a},b}] x --- x (a,,b,],
then P and P’ are not disjoint if and only if for all j = 1,...,n we have that
(aj,b;] and (a}, b}] are not disjoint. Hence if P, P’ are not disjoint, then a} < b7
for all j, where a/ = max{a;,a}} and b} = min{b;,b}}, and then PN P’" = P”,
where P” = (af,b{] x -+ x (all,b]. This proves (i).

If A= U | P, where the P, ..., P, are pairwise disjoint, and A’ = UézlPJf7
where the Pj,..., P/ are also pairwise disjoint, are two elements of A, then
ANA = Ulgigk,lgjgl P;N P]. The sets P; N P} are pairwise disjoint and they
all are open-closed generalized intervals, as we have just seen.

Hence, A is closed under finite intersections.

Consider the open-closed generalized interval P = (aq,b1] X -+ X (an, by]. Tt
is easy to see that P¢ can be written as the union of 2n (some may be empty)
pairwise disjoint open-closed generalized intervals. To express this in a concise
way, for every I = (a,b] denote I) = (—o0,a] and I") = (b, +00| the left
and right complementary intervals of I in R (they may be empty). If we write
P =1 x---x I, then P¢is equal to

I"xRx--xR U IxRx--xR U
I1><I§l)><R><-~-><R U leIQ(T)xRxme U

le---xIn_szffllxR U I1><-'~><In—2><I(T—)1XR U

n

_[1X~-'><In,1><.[»,(ll) U le"'XInflx-[T(lT)'

Hence, for every open-closed generalized interval P the complement P€¢ is an
element of A.

Now, if A = UleP,», where the P, ..., Py are pairwise disjoint, is any ele-
ment of A, then A¢ = N¥_, P¢ is a finite intersection of elements of A. Since A
is closed under finite intersections, A¢ € A and A is closed under complements.

Finally, if A, A’ € A, then AU A’ = (A°N A°)° € A and A is closed under

finite unions.
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Therefore A is an algebra and (ii) and (iii) are immediate.

It is convenient for certain purposes, and especially because functions are
often infinite valued, to consider R = R U {+00, —cc} and C = C U {oo} as
topological spaces and define their Borel o-algebras.

The e-neighborhood of a point = € R is, as usual, the interval (z—e¢, z+¢) and
we define the e-neighborhood of 400 to be (2, +00] and of —oo to be [—o00, —1).
We next say that U C R is open in R if every point of U has an e-neighborhood
(the € depending on the point) included in U. It is trivial to see (justifying the
term open) that the collection of all sets open in R is a topology of R, namely
that it contains the sets ) and R and that it is closed under arbitrary unions
and under finite intersections. It is obvious that a set U C R is open in R if and
only if it is open in R. In particular, R itself is open in R. It is also obvious
that, if a set U C R is open in R, then U N R is open in R. Therefore, the
topology of R coincides with its subspace topology as a subset of R.

The next result says, in particular, that we may construct the general Borel
set in R by taking the general Borel set in R and adjoining none or any one or
both of the points +00, —oo to it.

Proposition 1.12 We have

and
B = {A, AU {400}, AU{-o0}, AU {+00,—00} | A € Br}.

Also, if € is the collection containing {+oo} or {—oo} and all closed or all open
or all open-closed or all closed-open or all intervals in R, then B = X(&).

Proof: The first equality is immediate from Theorem 1.3.
Now, R is open in R and, thus, R € Bg. Therefore, from the first equality
and the last statement in Proposition 1.8, we get that

Br = {ACR|AE€Bg}.

Therefore, if A € Br, then A € Bg. Also, [-00,+00) is open in R and,
hence, {+o0} € Bg. Similarly, {—co} € By and {400, —00} € By and we
conclude that {A, AU {400}, AU {—o0}, AU {+00, -0} |A € Br} C Bg.
Conversely, let B € Bg and consider A = BN R € Br. Then B = A or
B =AU{+c0} or B=AU{—o0} or B =AU {400,—00} and we conclude
that Bg C {4, AU {+o00}, AU {—00}, AU {+00, —0c0}| A € Br}.

Let £ = {{+00}, (a,b]| — 00 < a < b < +o0}.

From all the above, we get that £ C Bg and, by Proposition 1.4, (&) C Bg.
From Proposition 1.10, if A € Bg, then A € ¥(&). In particular, R € 3(€) and,
hence, (—o0, +00] = RU {+o00} € X(€). Thus, also {—oc} = R\ (—o0, +0] €
Y(€) and {400, —0} = {+00} U {—o0} € X(£). From all these, we conclude
that Bg = {4, AU {400}, AU {—00}, AU {+00, —0c0}| A € Br} C Z(E).
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This concludes the proof of the last statement for this particular choice of £
and the proof is similar for all other choices.

We now turn to the case of C = C U {oo}. The e-neighborhood of a point
x = (x1,22) = x1 +ixg € C is, as usual, the open disc B(z;€) = {y = (y1,y2) €
Clly — z| < €}, where |y — z|> = (y1 — 21)? + (y2 — 22)?>. We define the e
neighborhood of oo to be the set {y € C|ly| > 1} U {oc}, the exterior of a
closed disc centered at 0 together with the point co. We say that a set U C C is
open in C if every point of U has an e-neighborhood (the e depending on the
point) included in U. The collection of all sets which are open in C contains §)
and C and is closed under arbitrary unions and under finite intersections, thus
forming a topology in C. It is clear that a set U C C is open in C if and only
if it is open in C. In particular, C itself is open in C. Also, if a set U C C is
open in C, then U N C is open in C. Therefore, the topology of C coincides
with its subspace topology as a subset of C.

As in the case of R, we may construct the general Borel set in C by taking
the general Borel set in C and at most adjoining the point co to it.

Proposition 1.13 We have
Bc = Bg|C

and

BGZ{A,AU{OO}|AEB(]}

Also, if € is the collection of all closed or all open or all open-closed or all
closed-open or all intervals in C = R?, then Bg = X(£).

Proof: The proof is very similar to (and slightly simpler than) the proof of
Proposition 1.12. The steps are the same and only minor modifications are
needed.

1.6 Exercises.

1. Let X be a non-empty set and Aj, As,... C X. We define

n—-+oo n—+00

limsup A4, = ﬂ:ocl ( Uj'zoz Aj), liminf A,, = Uﬁ;’j’ ( ﬂj':oz Aj).

Only in case liminf, 4. A, =limsup, ,, . A,, we define

lim A, =liminf A,, = limsup A,,.
n—-+0oo n—-+o0o n——+o0o

Prove the following.

(i) limsup,,_,, o Ap = {z € X |z € A, for infinitely many n}.

(ii) liminf, 400 Ap = {z € X |2 € A, for all large enough n}.

(iii) (liminf, 4o An)¢ = limsup,_, ., A5 and (limsup,,_, . An)¢ =
liminf,, _, 4o AS

n-
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(iv) liminf, o Ay, C limsup,, ., Ap.

(v) If A,, C A, 41 for all n, then lim,, ;o A, = US> A,.

(vi) If A,,41 C A, for all n, then lim,,, ;o 4, = ﬁj{i’jAn.

(vii) Find an example where liminf, . A, # limsup,,_, . A,.

(viii) If A,, € B, for all n, then limsup,,_,, ., A, C limsup,,_, B, and
liminf, . A, C liminf, 4o By.

(ix) If A, = B, UC,, for all n, then limsup,,_,, ., A, C limsup,,_,, ,, B,U
limsup,, ., Cp, liminf, . o B, Uliminf, o C, Climinf, o A,.

2. Let A be an algebra of subsets of X. Prove that A is a o-algebra if and
only if it is closed under increasing countable unions.

3. Let X be non-empty. In the next three cases find ¥(&) and M(E).
(i) E=0.
(ii) Fix £ C X and let £ = {F|E C F C X).
(iii) Let & = {F | F' is a two-point subset of X}.

4. Let &, &> be two collections of subsets of the non-empty X. If £, C & C
Y (&1), prove that 3(&) = X(&s).

5. Let Y be a non-empty subset of X.
(i) If A is an algebra of subsets of X, prove that A]Y is an algebra of
subsets of Y.
(ii) If M is a monotone class of subsets of X, prove that M]Y is a mono-
tone class of subsets of Y.
(iii) If 7 is a topology of X, prove that 7|Y is a topology of Y.

6. Let X be a topological space and Y be a non-empty Borel set in X. Prove
that By = {AngA € Bx}

7. Push-forward of a o-algebra.

Let ¥ be a o-algebra of subsets of X and let f : X — Y. Then the
collection

{BCY|f'(B)ex}

is called the push-forward of ¥ by f on Y.
(i) Prove that the collection {B C Y |f~!(B) € ¥} is a o-algebra of
subsets of Y.

Consider also a o-algebra ' of subsets of Y and a collection £ of subsets
of Y so that (&) =¥'.

(ii) Prove that, if f~1(B) € X for all B € &, then f~}(B) € X for all
BeX.

(iii) If X,Y are two topological spaces and f : X — Y is continuous, prove
that f~1(B) is a Borel set in X for every Borel set B in Y.

8. The pull-back of a o-algebra.
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10.

11.

12.

13.

Let X' be a o-algebra of subsets of Y and let f : X — Y. Then the
collection
{f71(B)|Bex}
is called the pull-back of ¥’ by f on X.
Prove that {f~1(B)| B € X'} is a o-algebra of subsets of X.

. (i) Prove that Brn is generated by the collection of all half-spaces in R™

of the form {x = (z1,...,2,) |a; < x;}, where j =1,...,n and a; € R.
(ii) Prove that Br~ is generated by the collection of all open balls B(x; )
or of all closed balls B(x;r), where x € R™ and r € R.

(i) Prove that By is generated by the collection of all (a,+oc], where
a€R.
(ii) Prove that Bg is generated by the collection of all open discs B(z;r)

or of all closed discs B(x;r), where z € C and r € R.

Let X be a metric space with metric d. Prove that every closed F' C X is a
Gs-set by considering the sets U, = {z € X |d(z,y) < % for some y € F}.
Prove, also, that every open U C X is an F,-set.

(i) Suppose that f : R™ — R. Prove that {x € R™| f is continuous at =}
is a Gs-set in R™.

(ii) Suppose that fr : R®™ — R is continuous in R™ for every k € N.
Prove that {z € R"|(fx(z)) converges} is an F,s-set, i.e. a countable
intersection of F,-sets.

Let £ be an arbitrary collection of subsets of the non-empty X. Prove
that for every A € X(&) there is some countable subcollection D C £ so
that A € X(D).
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Chapter 2

Measures

2.1 General measures.

Definition 2.1 Let (X,X) be a measurable space. A function p: ¥ — [0, +00]
is called a measure on (X,Y) if
(i) u(0) =0,
(i1) WU AL) = S50 (A, for all sequences (A,) of pairwise disjoint sets
which are contained in 3.

The triple (X,%, 1) of a non-empty set X, a o-algebra of subsets of X and
a measure [ on X is called a measure space.

For simplicity and if there is no danger of confusion, we shall say that u is a
measure on X or a measure on X.
Note that the values of a measure are non-negative real numbers or +oco.
Property (ii) of a measure is called o-additivity and sometimes a mea-
sure is also called o-additive measure to distinguish from a so-called finitely
additive measure p which is defined to satisfy u(0) = 0 and pu(UN_,A,) =
ZnN:1 w(Ay) for all N € N and all pairwise disjoint A;,..., Ay € X.

Proposition 2.1 Every measure is finitely additive.

Proof: Let u be a measure on the o-algebra . If A;,..., Ay € X are pair-

wise disjoint, we consider A, = () for all n > N and we get u(UY_;A,) =

PUES An) = S50 () = S0 ilAy).

Examples.
1. The simplest measure is the zero measure which is denoted o and is defined
by o(A) = 0 for every A € X.
2. Let X be an uncountable set and consider ¥ = {A C X | A is countable or A€
is countable}. We define p(A) = 0 if A is countable and p(A) = 1 if A° is count-
able.

Then it is clear that p(0) = 0 and let A;, As,... € ¥ be pairwise dis-
joint. If all of them are countable, then US> A,, is also countable and we get
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w(UF2A,) = 0 = 327 4u(A,). Observe that if one of the A,’s, say Ay, is
uncountable, then for all n # ng we have A, C Ano which is countable. There-
fore p(An,) = 1 and p(A,) = 0 for all n # ng. Since (U2 A4,)¢(C AS,) is
countable, we get u(UF25A,) =1 =37 u(A,).

Theorem 2.1 Let (X,X, 1) be a measure space.

(i) (Monotonicity) If A, B € ¥ and A C B, then u(A) < u(B).

(i) If A,B €3, AC B and u(A) < oo, then u(B\ A) = u(B ) u(A).

(iii) (o-subadditivity) If Ay, A, ... € B, then u(US25A,) < 27 1u(A,).

(iv) (Continuity from below) If Ay, Aa,... €3 and A, 1 A, then u(A,) 1 n(A).
(v) (Continuity from above) If Ay, As,... € B, u(An) < o0 for some N and
An LA, then p(Ay) | p(A).

Proof: (i) We write B = AU (B \ A). By finite additivity of u, u(B) =
u(A) + (B A) > u(A).

(ii) From both sides of u(B) = p(A) + u(B \ A) we subtract pu(A).

(iii) Using Proposition 1.2 we find By, Bs, ... € ¥ which are pairwise disjoint and
satisfy B,, C A, for all n and U/ B,, = U/ A,,. By o-additivity and mono-
tonicity of u we get u(Uf23A,) = p(U +C>°B ) S wB,) < Zn > (Ay).
(iv) We write A = A; UUS (Ag41 \Ak) Where all sets whose union is taken in
the right side are pairwise disjoint. Applying o-additivity (and finite additivity),
p(A) = p(Ar)+ 3,2 LA\ Ag) = Lim o [0( A1) + 3755 L (Akr1\ Ap)] =
limy, oo (A1 UUPZ] (Agar \ Ag)) = limy, oo p(Ap).

(v) We observe that Ay \ A, T Axy \ A and continuity from below implies
(AN \ Ap) T u(An \ A). Now, u(An) < +oo implies p(A4,) < +oo for all
n > N and p(A) < +oo. Applying (i), we get p(An) — p(An) T u(An) — p(A)
and, since pu(An) < +oo, we find pu(A4,) | p(A).

Definition 2.2 Let (X,X, 1) be a measure space.

(i) p is called finite if p(X) < 4o0.

(i3) p is called o-finite if there exist X1, Xa,... € ¥ so that X = U X,, and
w(Xp) < +oo for alln € N.

(1i) 1 is called semifinite if for every E € ¥ with u(E) = +oo there is an
FeX sothat FCFE and 0 < u(F) < +o0.

(iv) A set E € ¥ is called of finite p-measure if u(F) < +oo.

(v) A set E € ¥ is called of o-finite p-measure if there exist E1,Es,... € X
so that E C U2 E,, and u(E,) < +oo for all n.

For simplicity and if there is no danger of confusion, we may say that E is of
finite measure or of o-finite measure.

Some observations related to the last definition are immediate.
1. If p is finite then all sets in X are of finite measure. More generally, if £ € &
is of finite measure, then all subsets of it in % are of finite measure.
2. If p is o-finite then all sets in 3 are of o-finite measure. More generally, if
FE € ¥ is of o-finite measure, then all subsets of it in ¥ are of o-finite measure.
3. The collection of sets of finite measure is closed under finite unions.
4. The collection of sets of o-finite measure is closed under countable unions.
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5. If p is o-finite, applying Proposition 1.2, we see that there exist pairwise
disjoint X1, Xs,... € ¥ so that X = U:{SX,Z and u(X,) < +oo for all n.
Similarly, by taking successive unions, we see that there exist X7, Xo,... € X so
that X,, T X and p(X,) < +oo for all n. We shall use these two observations
freely whenever o-finiteness appears in the sequel.

6. If w is finite, then it is also o-finite. The next result is not so obvious.

Proposition 2.2 Let (X,X, u) be a measure space. If p is o-finite, then it is
semifinite.

Proof: Take X1, Xo,... € ¥ so that X,, T X and u(X,) < 400 for all n. Let
E € ¥ have u(E) = 4o00. From ENX,, 1 E and continuity of y from below, we
get u(E N X,) T 4+o00. Therefore, u(E N X,,) > 0 for some ng and we observe
that u(EN X)) < p(Xn,) < +00.

Definition 2.3 Let (X, X, u) be a measure space. E € X is called p-null if
u(E) = 0.

For simplicity and if there is no danger of confusion, we may say that E is null
instead of p-null.
The following is trivial but basic.

Theorem 2.2 Let (X,3, u) be a measure space.
(i) If E € ¥ is null, then every subset of it in ¥ is also null.
(i) If E1, Ea,... €Y are all null, then their union US> E, is also null.

Proof: The proof is based on the monotonicity and the o-subadditivity of pu.

2.2 Point-mass distributions.

Before introducing a particular class of measures we shall define sums of non-
negative terms over general sets of indices. We shall follow the standard practice
of using both notations a(i) and a; for the values of a function a on a set I of
indices.

Definition 2.4 Let I be a non-empty set of indices and a : I — [0,4+00]. We
define the sum of the values of a by

Z a; = sup { Z a; | F non-empty finite subset of I}.
i€l i€EF
If I =10, we define Y, a; =0.

Of course, if F' is a non-empty finite set, then ) ;. a; is just equal to the sum
Zszl a;,, where F = {a;,,...,a;,} is an arbitrary enumeration of F.
We first make sure that this definition extends a simpler situation.

Proposition 2.3 If I is countable and I = {iy,is,...} is an arbitrary enume-
ration of it, then ), a; = SFai, foralla: T — [0,400].
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Proof: For arbitrary N we consider the finite subset F' = {iy,...,ixy} of I.
Then, by the definition of ), ; a;, we have Zi\;l Qi = D iep @i < ) icr i
Since N is arbitrary, we find 3% a;, < Y ier i

Now for an arbitrary non-empty finite ' C I we consider the indices of
the elements of F' provided by the enumeration I = {iy,i2,...} and take the
maximal, say N, of them. This means that F C {iy,42,...,in}. Therefore
Yoier @i < Z,ivzl ai, < 425 a;, and, since F is arbitrary, we find, by the
definition of Y, ., a;, that >, a; < Zz:i ai, -

Proposition 2.4 Let a : I — [0,+o00]. If Y, ;a; < 400, then a; < 400 for
all i and the set {i € I'|a; > 0} is countable.

Proof: Let ), ;a; < 4o00. It is clear that a; < 4-oc for all i (take F' = {i}) and,
for arbitrary n, consider the set I,, = {i € I'|a; > 1}. If F is an arbitrary finite
subset of I,,, then %card(F) < Y ier @i < Y cpa;i. Therefore, the cardinality
of the arbitrary finite subset of I,, is not larger than the number n ), _; a; and,

hence, the set I,, is finite. But then, {i € I'|a; > 0} = U291, is countable.

Proposition 2.5 (i) If a,b : I — [0,+00] and a; < b; for all i € I, then

Zie] a; < icr bi-
(i) If a: I — [0,+o00] and J C I, then Y, a; <>, a.

Proof: (i) For arbitrary finite F* C I we have ), cpa; < Y, cpbi < D ;b
Taking supremum over the finite subsets of I, we find ), ; a; <., b;.
(ii) For arbitrary finite ' C J we have that /' C I and hence ), pa; < > a;.
Taking supremum over the finite subsets of J, we get >, ;a; < > .. a;.

Proposition 2.6 Let [ = Ugci Ji, where K is a non-empty set of indices and
the Ji’s are non-empty and pairwise disjoint. Then for every a : I — [0, +0o0]

we have Y e ai = Y e (Yicy, @i)-

Proof: Take an arbitrary finite F' C I and consider the finite sets Fy, = F N Jk.
Observe that the set L = {k € K|F), # (} is a finite subset of K. Then,
using trivial properties of sums over finite sets of indices, we find } ;. pa; =
ZkeL (ZieFk ai). The definitions imply that ZiEF a; < ZkeL (ZiEJk ai) <
> kex (Xiey, ai). Taking supremum over the finite subsets F of I we find
Yier @i < Yrer (Lies, 0i)-

Now take an arbitrary finite L C K and arbitrary finite Fj, C Ji for each
k€ L. Then ), (ZieFk a;) is, clearly, a sum (without repetitions) over
the finite subset Uper Fy of I. Hence ), (ZzeFk ai) < D ier @i Taking
supremum over the finite subsets Fj of J; for each k € L, one at a time, we
get that >, (ZieJk ai) < > ier @i- Finally, taking supremum over the finite
subsets L of K, we find 7, o (X, @i) < >;c; ai and conclude the proof.

After this short investigation of the general summation notion we define a
class of measures.

24



Proposition 2.7 Let X be non-empty and consider a : X — [0,4+00]. We
define i : P(X) — [0, +00] by

wE)=> a,, ECX.
zeE

Then p s a measure on (X, P(X)).

Proof: 1t is obvious that p(0) = > .y az = 0.
If Fh, Es,... are pairwise disjoint and E = UiflEn, we apply Propositions
2.3 and 2.6 to find u(E) = ¥, cpae = Y en (Xaen, t2) = Yopen M(En) =

Definition 2.5 The measure on (X, P(X)) defined in the statement of the pre-
vious proposition is called the point-mass distribution on X induced by
the function a. The value a, is called the point-mass at x.

Examples.
1. Consider the function which puts point-mass a, = 1 at every z € X. It is
then obvious that the induced point-mass distribution is

4(E) = card(E), if F is a finite C X
T 400, if £ is an infinite C X.

This £ is called the counting measure on X.
2. Take a particular ¢y € X and the function which puts point-mass a,, = 1 at
xo and point-mass a; = 0 at all other points of X. Then the induced point-mass
distribution is
|1, ifxpe ECX,
0o (E) = {0, ifeg¢ ECX.

This d4, is called the Dirac measure at z; or the Dirac mass at xg.

Of course, it is very easy to show directly, without using Proposition 2.7,
that these two examples, f and d,,, constitute measures.

2.3 Complete measures.

Theorem 2.2(i) says that a subset of a p-null set is also p-null, provided that
the subset is contained in the o-algebra on which the measure pu is defined.

Definition 2.6 Let (X, X, 1) be a measure space. Suppose that for every E € ¥
with w(E) =0 and every F C E it is implied that F € ¥ (and hence pu(F) =0,
also). Then p is called complete and (X, X, 1) is a complete measure space.

Thus, a measure pu is complete if the o-algebra on which it is defined contains
all subsets of p-null sets.
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Definition 2.7 If (X,X1, 1) and (X, X9, u2) are two measure spaces on the
same set X, we say that (X, g, 12) is an extension of (X,3q,u1) if X1 C Xo
and p1(E) = po(E) for all E € 3.

Theorem 2.3 Let (X, %, i) be a measure space. Then there is a unique small-
est complete extension (X, %, 1) of (X, X, u). Namely, there is a unique measure
space (X, %, i) so that

(i) (X,3,71) is an extension of (X,X, i),

(ii) (X, %, 1) is complete,

(iii) if (X, X, 1) is another complete extension of (X,%, i), then it is an exten-
sion also of (X, %, 7).

Proof: We shall first construct (X, %, 7). We define
YS={AUF|A€¥ and F C E for some E € ¥ with u(E) = 0}.

We prove that ¥ is a o-algebra. We write () = QU(), where the first () belongs
to X and the second 0 is a subset of () € ¥ with () = 0. Therefore §) € 3.

Let Be€ Y. Then B= AUF for A€ ¥ and F C of some F € ¥ with
w(E) = 0. Write B¢ = A; U Fy, where A; = (AUE)  and F; = E\ (AUF).
Then A; € ¥ and F; C E. Hence B® € X.

Let By, Bs,... € X. Then for every n, B,, = A, UF, for A, € £ and F,, C
of some E,, € ¥ with u(E,) = 0. Now U/ B,, = (U2 A4,) U (UF2 F,), where
Ut A, € ¥ and USNFE, C U E, € ¥ with u(U > E,) = 0. Therefore
Ut B, €%

We now construct fi. For every B € ¥ we write B = AUF for A € ¥ and
F C of some E € ¥ with u(E) = 0 and define

7i(B) = n(A).

To prove that i(B) is well defined we consider that we may also have B =
A'UF for A’ € ¥ and F’ C of some E’ € ¥ with u(E’) = 0 and we must prove
that u(A) = u(A’). Since A C B C A’ UE’, we have u(A) < p(A') + u(E') =
w(A”") and, symmetrically, u(A") < p(A).

To prove that 7 is a measure on (X, ) let ) = QU as above and get 11(0) =
(D) = 0. Let also By, Ba, ... € ¥ be pairwise disjoint. Then B,, = A,, U F}, for
A, €¥ and F, C E,, € ¥ with u(E,) = 0. Observe that the A,,’s are pairwise
disjoint. Then U B, = (U!XA,) U (UFNF,) and UNF, C UfNE, € %
with 4(UFS By = 0. Therelore (UTSBa) = (U35 An) = 3003 A(An) =
Sa S (B B

We now prove that [ is complete. Let B € ¥ with i(B) = 0 and let B’ C B.
Write B = AUF for A € ¥ and F C F € ¥ with u(F) = 0 and observe
that pu(A) = @(B) = 0. Then write B’ = A’ U F’, where A’ = ) € ¥ and
F' =B C F' where ' = AUFE € ¥ with u(E£’") < u(A4) + u(E) = 0. Hence
B' e .

To prove that (X, 3, %) is an extension of (X, ¥, 1) we take any A € ¥ and
write A = AU, where ) C () € X with () = 0. This implies that A € 3 and

i(A) = p(A).
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Now suppose that (X ,i 1) is another complete extension of (X, 3, ). Take
any B € ¥ and thus B = AU F for A € ¥ and ' C F € ¥ with p(E) = 0.
But then A, E € ¥ and i(E) = W(E) = 0. Since 7 is complete, we get that also
FeYand hence B=AUF € 3.

Moreover, 1i(A) < 7i(B) < n(A) + a(F) = @(A), which implies @(B) =
B(A) = u(A) =7(B).

It only remains to prove the uniqueness of a smallest complete extension of
(X, X, u). This is obvious, since two smallest complete extensions of (X, X, u)
must both be extensions of each other and, hence, identical.

Definition 2.8 If (X, X, 1) is a measure space, then its smallest complete ex-
tension is called the completion of (X, X, u).

2.4 Restriction of a measure.

Proposition 2.8 Let (X, X, u) be a measure space and let Y € 3. If we define
py 3 — [0, +00] by

py(A) =pANY),  Aes,

then wy is a measure on (X, X) with the properties that iy (A) (A) for every

AeX, ACY, and that uy (A) =0 for every A€ X, ANY (D

Proof: We have py (0) = p(0NY) = p(0) = 0.
If Ay, As,... € ¥ are pairwise disjoint, py (U ;foA) = u((Uj‘:OTAj) ny) =

+
p(U (A3 NY)) = 33727 u(A; 1Y) = 5205 iy (4y).
Therefore, uy is a measure on (X,3) and its two properties are trivial to
prove.

Definition 2.9 Let (X,3, u) be a measure space and let Y € X. The measure
py on (X, X) of Proposition 2.8 is called the Y -restriction of .

There is a second kind of restriction of a measure. To define it we recall
that, if Y € X, the restriction XY of the o-algebra ¥ of subsets of X on the
non-empty Y C X is XY ={ACY|Ae X}

Proposition 2.9 Let (X, 3, u) be a measure space and let Y € ¥ be non-empty.
We consider XY = {ACY |A € 2} and define u]Y : Y — [0, 400] by

(uY)(A) = p(4),  AeX]Y
Then u]Y is a measure on (Y,X]Y).
Proof: Obvious.

Definition 2.10 Let (X, X, 1) be a measure space and let' Y € ¥ be non-empty.
The measure p|Y on (Y,XY) of Proposition 2.9 is called the restriction of
pon XY
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Informally speaking, we may describe the relation between the two restric-
tions of u as follows. The restriction py assigns value 0 to all sets in ¥ which
are included in the complement of Y while the restriction p]Y simply ignores
all those sets. Both restrictions py and p]Y assign the same values (the same
to the values that p assigns) to all sets in ¥ which are included in Y.

2.5 Uniqueness of measures.

The next result is very useful when we want to prove that two measures are
equal on a og-algebra X. It says that it is enough to prove that they are equal on
an algebra which generates X, provided that an extra assumption of o-finiteness
of the two measures on the algebra is satisfied.

Theorem 2.4 Let A be an algebra of subsets of X and let p,v be two mea-
sures on (X,X(A)). Suppose there exist Ay, As,... € A with A, T X and
w(Ag), v(Ag) < oo for all k.

If p,v are equal on A, then they are equal also on L(A).

Proof: (a) Suppose that u(X),v(X) < +oc.

We define the collection M = {E € X(A)|u(E) = v(E)}. It is easy to
see that M is a monotone class. Indeed, let Fq,Fs,... € M with E, T E.
By continuity of measures from below, we get u(E) = lim, o0 p(E,) =
lim,— oo ¥(E,) = v(F) and thus E € M. We do exactly the same when
E, | E, using the continuity of measures from above and the extra assumption
p(X),v(X) < +oo.

Since M is a monotone class including A, Proposition 1.7 implies that
M(A) € M. Now, Theorem 1.1 implies that X(A) C M and, thus, u(E) =
v(E) for all E € £(A).

(b) The general case.
For each k, we consider the Ag-restrictions of u,v. Namely,

pay(B) = f(EN A, va (E) = v(ENA)

for all E € X(A). All puga, and va, are finite measures on (X,X), because
pa, (X) = p(Ar) < 400 and va, (X) = v(Ar) < +oo. We, clearly, have that
ta,,va, are equal on A and, by the result of (a), they are equal also on X(.A).
For every E € 3(A), using the F N A T E and the continuity of measures
from below, we can write pu(E) = limg— oo p(F N Ag) = limg_, 400 pia, (E) =
limg 400 ¥4, (E) = limg, 400 v(E N Ag) = v(E).
Thus, u,v are equal on X(A).

2.6 Exercises.
1. Let (X,X, 1) be a measure space and Y € ¥ be non-empty. Prove that
wy is the only measure on (X, ¥) with the properties:

(i) py (E) = u(E) for all E € ¥ with ECY,
(ii) py (E) =0 for all EF € ¥ with E C Y*°.
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. Positive linear combinations of measures.

Let i, p1 12 be measures on the measurable space (X, X)) and x € [0, +00).
(i) Prove that ku : ¥ — [0, 4+00], which is defined by

(kp)(E) = k- W(E),  E€X,

(consider 0 - (+00) = 0) is a measure on (X,X). This xu is called the
product of i by x.
(ii) Prove that pq1 + po : £ — [0, 4+00], which is defined by

(p1 + p2)(E) = (E) + p2(E),  EE€X,
is a measure on (X, ). This pj + po is called the sum of p; and pus.
Thus, we define positive linear combinations ki + -+ + Ky fin-

. Let X be non-empty and consider a finite A C X. If a : X — [0, +00]
satisfies a, = 0 for all ¢ A, prove that the point-mass distribution u
on X induced by a can be written as a positive linear combination (see
Exercise 2.6.2) of Dirac measures:

=10 + -+ Kby, -

. Let X be infinite and define for all E C X

(E) = 0, if I/ is finite,
ME)= 400, if E is infinite.

Prove that p is a finitely additive measure on (X,P(X)) which is not a
measure.

. Let (X,X, ) be a measure space and E € ¥ be of o-finite measure. If
{D;}ier is a collection of pairwise disjoint sets in X, prove that the set
{i e I|p(E N D;) > 0} is countable.

. Let X be uncountable and define for all E C X

(E) = 0, if F is countable,
mE) = +00, if E is uncountable.

Prove that p is a measure on (X,P(X)) which is not semifinite.

. Let (X,X, ) be a complete measure space. If A € ¥, B C X and
u(AAB) =0, prove that B € ¥ and u(B) = p(A).

. Let p be a finitely additive measure on the measurable space (X, X).

(i) Prove that u is a measure if and only if it is continuous from below.
(if) If 4(X) < 400, prove that p is a measure if and only if it is continuous
from above.
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10.

11.

12.

13.

Let (X,X, ) be a measure space and Aj, As,... € ¥. Prove that (see
Exercise 1.6.1)

(i) p(liminf,— 400 An) < liminf,— 4o p(An),

(i) imsup,, o u(An) < M(llmbupn_)+oo Ap), if u( 294,) < oo,

(iti) p(limsup,,_, 4 An) = 0, if 3% u(A,) < +

Increasing limits of measures are measures.

Let (ur,) be a sequence of measures on (X, X)) which is increasing. Namely,
tn(E) < piny1(E) for all E € 3 and all n. We define

w(E)= lim p,(E), EcXx.

n—-+o0o
Prove that p is a measure on (X, ¥).

The inclusion-exclusion formula.

Let (X, X, i) be a measure space. Prove that for all n and Ay,..., 4, € &

U A+ Y > AN N4

kEeven1<i<---<ix<n

= > S u(A NN Ay,

k odd 1<ii<-<ixg<n

Let I be a set of indices and a,b: I — [0, +].

(i) Prove that ), ;a; = 0 if and only if a; = 0 for all i € [.
(ii) If J = {i € I'|a; > 0}, prove that } ., a; = .. a;
(iii) Prove that, for all s € [0, +00),

}z:liai :ZHJZE:(M.
i€l il
(consider 0 - (+00) = 0).
(iv) Prove that
Z a; + b;) Z a; + Z b; .
i€l i€l el

Tonelli’s Theorem for sums.

Let I, J be two sets of indices and a : I x J — [0, +00]. Using Proposition
2.6, prove that

2. (2 ag)= 3 ay=3 (D auy).

iel  jeJ (i,5)€IxT jeJ el

Recognize as a special case the

STlai+b) =D ai+ b

i€l i€l i€l

for every a,b: I — [0, 4+00] (see Exercise 2.6.12).
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14.

15.

16.

17.

18.

19.

Let X be non-empty and consider the point-mass distribution p defined
by the function a : X — [0, +o00]. Prove that

(i) p is semifinite if and only if a, < +oo for every x € X,

(ii) p is o-finite if and only if a, < +oo for every z € X and the set
{z € X |a, > 0} is countable.

Characterisation of point-mass distributions.
Let X # 0. Prove that every measure p on (X,P(X)) is a point-mass
distribution.

The push-forward of a measure.

Let (X,X, ) be a measure space and f : X — Y. We consider the o-
algebra X' = {B C Y | f~1(B) € £}, the push-forward of ¥ by f on Y
(see Exercise 1.6.7). We define

W(B)=pu(f~'(B), Bex.

Prove that u' is a measure on (Y,X'). It is called the push-forward of
uwby fonY.

The pull-back of a measure.

Let (Y,3, 1) be a measure space and f : X — Y be one-to-one and onto
Y. We consider the o-algebra ¥ = {f~1(B)| B € ¥'}, the pull-back of ¥’
by f on X (see Exercise 1.6.8). We define

pA) = (f(4),  Aex.

Prove that p is a measure on (X, X). It is called the pull-back of 1/ by
fon X.

Let (X, X, u) be a measure space.
(i) If A, B € ¥ and u(AAB) =0, prove that u(A) = u(B).
(ii) We define A ~ B'if A,B € ¥ and p(AAB) = 0. Prove that ~ is an

equivalence relation on .

We assume that (X) < 400 and define

d(A,B) = W(AAB), A, Bex.

iii) Prove that d is a pseudometric on ¥. This means: 0 < d(A, B) < +oo,
(A,B) =d(B,A) and d(A,C) < d(A,B) +d(B,C) for all A,B,C € X.
iv) On the set X/ ~ of all equivalence classes we define

d([A],[B]) = d(A, B) = W(AAB),  [A],[B]€ X/ ~.

(
d
(
Prove that d([4], [B]) is well defined and that d is a metric on 3/ ~.

Let p be a semifinite measure on the measurable space (X, Y). Prove that
for every F € ¥ with p(E) = 400 and every M > 0 there is an F' € ¥ so
that F C F and M < p(F) < 4oc.
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20. The saturation of a measure space.

21.

Let (X,X, 1) be a measure space. We say that £ C X belongs locally
to Xif ENAcXforall Ae X with pu(A) < +00. We define

5. = {E C X | E belongs locally to ¥}.

(i) Prove that ¥ C ¥ and that ¥ is a o-algebra. If & = 3, then (X, 3, )
is called saturated.
(ii) If p is o-finite, prove that (X, X, u) is saturated.

We define B, it 5

_ wE), if EeXx,

E)= =

i) {+oo, if e\ %,
(iii) Prove that g is a measure on (X,i), and, hence, (X,i,ﬁ) is an
extension of (X, X, u).
(iv) If (X, X, u) is complete, prove that (X, 3, i) is also complete.
(v) Prove that (X, 3, i) is a saturated measure space.

(X,%,7) is called the saturation of (X, ).

The direct sum of measure spaces.

Let {(Xi, i, i) }ier be a collection of measure spaces, where the X;’s are
pairwise disjoint. We define

X = Uier X;, Z:{EQX|EQXZ€ZlfOI‘aHZ€I}

and

w(E) = ZM(E N X;)
il

for all £ € X.
(i) Prove that (X,¥, ) is a measure space. It is called the direct sum
of {(X;,%;, i) }ier and it is denoted

@ier(Xi, Bi, pi).

(ii) Prove that w is o-finite if and only if the set J = {i € I'|u; # o} is
countable and p; is o-finite for all ¢ € J.
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Chapter 3

Outer measures

3.1 Outer measures.

Definition 3.1 Let X be a non-empty set. A function p* : P(X) — [0, +00] is
called outer measure on X if
(1) p*(0) =0,
(i) p*(A) < p*(B) if ACBC X,
(iii) p* (U2 An) < S8 p*(A,) for all sequences (Ay) of subsets of X.
Thus, an outer measure on X is defined for all subsets of X, it is monotone
and o-subadditive. An outer measure is also finitely subadditive, because for
every Aj,...,Ay C X we set A, = 0 for all n > N and get p*(U)_,A4,) =

* [e%) 00 % N *
K (U::1An) < ZZ:l P (An) =3 =1 1 (An).

We shall see now how a measure is constructed from an outer measure.

Definition 3.2 Let u* be an outer measure on the non-empty set X. We say
that the set A C X is u*-measurable if

pH(ENA) +p (BN AY) = p*(E)

forall EC X.
We denote X+ the collection of all p*-measurable subsets of X.

Thus, a set is p*-measurable if and only if it decomposes every subset of X into
two disjoint pieces whose outer measures add to give the outer measure of the
subset.

Observe that E = (ENA) U (E N A°) and, by the subadditivity of p*, we
have p*(E) < p*(ENA)+ p*(EN A°). Therefore, in order to check the validity
of the equality in the definition, it is enough to check the inequality

i (B0 A) + 1 (BN A9) < i (E).
Furthermore, it is enough to check this last inequality in the case p*(E) < +o0.
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Theorem 3.1 (Caratheodory) If u* is an outer measure on X, then the collec-
tion X« of all p*-measurable subsets of X is a o-algebra. If we denote 1 the
restriction of u* on X, then (X,X,-, 1) is a complete measure space.

Proof: p*(ENQ) + p*(EN0Y°) = p*(0) + p*(E) = p*(E) and, thus, § € X,-.

If A e X, then p*(ENA®)+p*(EN(A°)°) = p*(ENA)+p*(ENA°) = p*(E)
for all E C X. Therefore, A° € ¥« and ¥, is closed under complements.

Let now A, B € ¥,,- and take an arbitrary &£ C X. To check AU B € ¥
write p*(EN(AUB))+p*(EN(AUB)°) = p*(EN(AUB))+p*(EN(A°N B%))
and use the subadditivity of p* for the first term to get < p*(E N (AN B9)) +
p(EN(BNA)) 4+ p*(EN(ANB))+p*(EN(A°N B°)). Now combine the first
and third term and also the second and fourth term with the p*-measurability
of B toget = p*(ENA)+p*(ENA®), which is = p*(FE) by the p*-measurability
of A.

This proves that AU B € X~ and by induction we get that ¥, is closed
under finite unions. Since it is closed under complements, X+ is an algebra of
subsets of X and, hence, it is also closed under finite intersections and under
set-theoretic differences.

Let A,B € ¥~ with ANB = () and get for all E C X that p*(EN(AUB)) =
P ([EN(AUB)|INA)+p*([EN(AUB)|NA°) = u*(ENA)+p*(ENB). By an
obvious induction we find that, if A;,..., Ay € X,+ are pairwise disjoint and
E C X is arbitrary, then p*(EN(A4A1U---UAN)) = p*(ENA7)+- - +p*(ENAy).
If now Ay, Az, ... € ¥« are pairwise disjoint and F C X is arbitrary, then, for
all N, " (BN AL+ —+p* (BN Ax) = p* (EN(AU- - -UAw)) < i (EN(UE5 An))
by the monotonicity of z*. Hence Y% p*(ENA,) < p*(EN(U25A,)). Since
the opposite inequality is immediate after the o-subadditivity of u*, we conclude
with the basic equality

+oo
S u(ENA,) =t (B0 (U5 A))
n=1

for all pairwise disjoint A1, As,... € X~ and all £ C X.

If Ay, Ag,... € X+ are pairwise disjoint and £ C X is arbitrary, then, since
¥, is closed under finite unions, UY_; A, € ¥, for all N. Hence u*(E) =
H(EN(UN An)) i (BN(UN_ An)®) 2 0L, 1" (BN An)+p7 (EN(UF2 4,)°),
where we used the basic equality for the first term and the monotonicity of p*
for the second. Since N is arbitrary, p*(E) > Y/ p*(E N A,) + p*(E N
(U2 A,)0) = " (EN (U AL)) + p* (BN (U2 A4,)°) by the basic equality.

This means that U2 A,, € 3,

If Ay, Ay, ... € ¥+ are not necessarily pairwise disjoint, we write By = A,
and B, = A, \ (A1 U---UA,_4) for all n > 2. Since X,- is an algebra,
all By,’s belong to ¥~ and they are pairwise disjoint. By the last paragraph,
U A, = U B, € 2. We conclude that ¥, is a o-algebra.

We now define p : X,,» — [0, 400] as the restriction of p*, namely

WA =it (A),  AET,.



Using £ = X in the basic equality, we get that for all pairwise disjoint
Ay, A, GZM*7

+oo +oo
S n(An) = 3 i (An) = 1 (U An) = p(UF5 An).
n=1 n=1

Since p(0) = p*(0) = 0, we see that (X, X+, 1) is a measure space.

Let A € ¥+ with p(A) =0 and B C A. Then p*(B) < p*(A) = p(A) =0
and for all E C X we get u*(E N B) + p*(E N B°) < u*(B) + p*(E) = p*(E).
Therefore, B € ¥~ and u is complete.

As a by-product of the proof of Caratheodory’s theorem we get the useful

Proposition 3.1 Let u* be an outer measure on X.
(i) If B C X has p*(B) =0, then B is p*-measurable.
(i1) For all pairwise disjoint pu*-measurable Ay, A, ... and all E C X

+oo
Y H(ENA,) =t (BN (U5 A4,)).

n=1

Proof: The proof of (i) is in the last part of the proof of the theorem of
Caratheodory and (ii) is the basic equality in the same proof.

The most widely used method of producing measures is based on the Theo-
rem of Caratheodory. One starts with an outer measure p* on X and produces
the measure space (X, X+, ). There are mainly two methods of constructing
outer measures. One method starts with a (more or less) arbitrary collection C
of subsets of X and a function 7 on this collection and it will be described in
the next section. The second method will be studied much later and its starting
point is a continuous linear functional on a space of continuous functions. The
central result related to this method is the important F. Riesz Representation
Theorem.

There is another method of producing measures. This is the so-called Daniell
method which we shall describe also later.

3.2 Construction of outer measures.

Theorem 3.2 Let C be a collection of subsets of X, containing at least the (),
and 7 : C — [0,+00] be an arbitrary function with 7(0) = 0. We define

+oo
*(E) = inf { > 7(Cy)|Cr.Ch, ... €C s0 that E C ujgfcn}

j=1

for all E C X, where we agree that inf ) = +oo.
Then, u* is an outer measure on X .
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It should be clear that, if there is at least one countable covering of F with
elements of C, then the set {Zj:f 7(C;)|C1,Cy, ... € Cso that E C ujg;cn}
is non-empty. If there is no countable covering of F with elements of C, then
this set is empty and we take p*(F) = inf () = +o0.

Proof: For () the covering § CQUPU - -- implies p*(0) < 7(0) +7(0) +--- =0
and, hence, p*(0) = 0.

Now, let A C B C X. If there is no countable covering of B by elements
of C, then p*(B) = +oo and the inequality p*(A4) < p*(B) is obviously true.
Otherwise, we take an arbitrary covering B C U+°°C with C1,... € C. Then
we also have A C U*f_‘xfC’ and, by the deﬁmtlon of p*(A), we get p*(A) <
Z] 1 7(C;). Taking the infimum of the right side, we find p*(A) < p*(B).

Finally, let’s prove p*(Uf>A4,) < Zn 11 (Ay) for all A, As,... C X.
If the right side is = 400, the inequality is clear. Therefore we assume that
the right side is < +oo and, hence, that p*(4,) < +oo for all n. By the
definition of each p (A ), for every € > 0 there exist Cp, 1,Ch 2,... € C so that

A, CUJ 2C,,; and Z; N 7(Chyj) < p*(An) + 5=

Then U2 A4, C U(n,j)eNxNChn,j and, using an arbitrary enumeration of
N x N and Proposition 2.3, we get by the definition of u*(U}!>A4,) that
u*(U+°°A ) < 2(njyenxn T(Cnj). Proposition 2.6 implies p(UfNA,) <

(ZJ 2 (Cng)) < 20 (An) + 5r) = S w*(An) + e Since € is

arbltrary, we conclude that p*(U/>5A,) < Zzzl *(Ap).

3.3 Exercises.

1. Let p* be an outer measure on X and ¥ C X. Define p3 (E) = p*(ENY)
for all £ C X and prove that p3- is an outer measure on X and that Y is
113--measurable.

2. Let p*,uf, u5 be outer measures on X and k € [0,+00). Prove that
Kk, pi + ps and max{ui, u5} are outer measures on X, where these are
defined by the formulas

(k) (E) = k- p*(E),  (u] +p3)(E) = pi(E) + p3(E)
(consider 0 - (+00) = 0) and
max{pu, py }(E) = max{u] (E), p3(E)}
forall EF C X.

3. Let X be a non-empty set and consider p*(f) = 0 and p*(E) = 1 if
) # E C X. Prove that p* is an outer measure on X and find all the
w*-measurable subsets of X.

4. For every E C N define x(E) = limsup,,_, | o % card(EN{1,2,...,n}). Is
% an outer measure on N?
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5. Let (u}) be a sequence of outer measures on X. Let p*(E) = sup,, 1 (F)
for all E C X and prove that p* is an outer measure on X.

6. Let p* be an outer measure on X. If Ay, Ay,... € ¥, and A, T A, prove
that p*(A, N E) T p*(ANE) for every E C X.

7. Ezxtension of a measure, I.

Let (X, X0, o) be a measure space. For every E C X we define
1nf{z,u0 |A17A2,...620,EQU;_:(X1)AJ‘},

(i) Prove that p* is an outer measure on X. We say that p* is induced
by the measure .

(ii) Prove that p*(E) = min {p(A)| A € 5o, E C A}.

(iii) If (X, X, 1) is the complete measure space which results from p* by
the theorem of Caratheodory (i.e. p is the restriction of u* on X,,+), prove
that (X, X+, 1) is an extension of (X, X, to).

(iv) Assume that E C X and A1, As,... € ¥y with E C Uj*:cfoj and
1(A;) < +oo for all j. Prove that E € ¥+ if and only if there is some
A € ¥ so that E C A and p*(A\ E) = 0.

(v) If p is o-finite, prove that (X, X, p) is the completion of (X, ¥, o).
(vi) Let X be an uncountable set, ¥y = {A C X | A is countable or A€ is
countable} and po(A) = §(A) for every A € ¥y. Prove that (X, %o, o) is
a complete measure space and that ¥,- = P(X). Thus, the result of (v)
does not hold in general.

(vii) Prove that (X,3,«, 1) is always the saturation (see Exercise 2.6.20)
of the completion of (X, X, uo).

8. Measures on algebras.

Let A be an algebra of subsets of X. We say that u: A — [0,4+00] is a
measure on (X, A) if

(i) u(9) =0 and

(ii) M(U;:OiAJ) E; 1 11(A;) for all pairwise disjoint Ay, As, ... € A with
U;_:OTAj e A.

Prove that if 41 is a measure on (X, .A), where A is an algebra of subsets of
X, then pu is finitely additive, monotone, o-subadditive, continuous from
below and continuous from above (provided that, every time a countable
union or countable intersection of elements of A appears, we assume that
this is also an element of A).

9. Eaxtension of a measure, II.
Let Ag be an algebra of subsets of the non-empty X and pg be a measure
on (X, Ap) (see Exercise 3.3.8). For every E C X we define

1nf{2u0 |A1,A2,...EA0,E§U;_:O?AJ‘},
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10.

11.

12.

13.

(i) Prove that p* is an outer measure on X. We say that p* is induced
by the measure .

(ii) Prove that p*(A) = po(A) for every A € Ay.

(iii) Prove that every A € Ay is p*-measurable and hence 3(Ag) C X,+.

Thus, if (after Caratheodory’s theorem) p is the restriction of p* on 3+,
the measure space (X, X+, 1) is a complete measure space which extends
(X, Ao, o).

If we consider the restriction (X,X(Ap), ), then this is also a measure
space (perhaps not complete) which extends (X, Ay, o).

(iv) If (X,%(Ap),v) is another measure space which is an extension of
(X, Ao, po), prove that u(E) < v(E) for all E € X(Ap) with equality in
case u(E) < +o0.

(v) If the original (X, Ag, to) is o-finite, prove that y is the unique measure
on (X, X(Ap)) which is an extension of pg on (X, Ag).

Regular outer measures.

Let ©* be an outer measure on X. We say that pu* is a regular outer
measure if for every £ C X there is A € 3, so that £ C A and
w*(E) = p(A) (where p is the usual restriction of p* on X« ).

Prove that u* is a regular outer measure if and only if p* is induced by
some measure on some algebra of subsets of X (see Exercise 3.3.9).

Measurable covers.

Let p* be an outer measure on X and p be the induced measure (the
restriction of p*) on ¥,,-. If E,G C X we say that G is a p*-measurable
cover of F'if EC G, G € X+ and for all A € ¥« for which A C G \E
we have pu(A) = 0.

(i) If G1,G2 are p*-measurable covers of E, prove that u(G1AG2) = 0
and hence u(G1) = u(Gs).

(ii) Suppose E C G, G € £+ and p*(E) = pu(G). If p*(E) < +o0, prove
that G is a p*-measurable cover of E.

We say £ C R has an infinite condensation point if £ has uncount-
ably many points outside every bounded interval. Define p*(E) =0 if E
is countable, p*(E) = 1 if F is uncountable and does not have an infinite
condensation point and p*(E) = 400 if E has an infinite condensation
point. Prove that p* is an outer measure on R and that A C R is p*-
measurable if and only if either A or A¢ is countable. Does every E C R
have a p*-measurable cover? Is p* a regular outer measure? (See exercises
3.3.10 and 3.3.11).

Consider the collection C of subsets of N which contains () and all the
two-point subsets of N. Define 7(f)) = 0 and 7(C) = 2 for all other C € C.
Calculate p*(E) for all E C N, where p* is the outer measure defined as
in Theorem 3.2, and find all the p*-measurable subsets of N.
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Chapter 4

Lebesgue measure on R"

4.1 Volume of intervals.

We consider the function vol, (S5) defined for intervals S in R™, which is just
the product of the lengths of the edges of S: the so-called (n-dimensional)
volume of S. In this section we shall investigate some properties of the volume
of intervals.

Lemma 4.1 Let P = (a1,b1] X -+ X (an,by] and, for each k = 1,...,n, let
ar = c,(fo) < c](;) << cg”’“) =by. If we set P;, ;. = (0(1“_1),05“)} X oo X
(cg”_l),c%”)] for1<iy <muy,...,1<i, <m,, then

vol, (P) = Z voly (P, ).

1<iz<mg,...,1<in <my

Proof: For the second equality in the following calculation we use the distribu-
tive property of multiplication of sums:

Z VOln(Pil,H.,in)

1<ii <my,..., 1<, <my,

= Z (cgil) _ cghfl)) . (C»EZW) _ Cgf"_l))
1<iy <ma,...,1<i, <m,
my ",
: i1—1 4 i —
:Z(cgl)_cgl ))"'Z(C%")—Cg" 1))
i1=1 in=1

=(by —a1) - (bn — an) = vol,(P).

Referring to the situation described by Lemma 4.1 we shall use the expres-
result from P by subdivision of its edges.

.... in

Lemma 4.2 Let P, Py,..., P, be open-closed intervals and Py, ..., P, be pair-
wise disjoint. If P = Py U---U Py, then vol,(P) = vol,(P1) + - - - + vol, (P)).
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Proof: Let P = (a1,b1] x -+ x (an,b,] and P; = (agj),bgj)] X e X (a%%bif)] for
every j=1,...,1.

For every kK =1,...,n we set

P I IS S N Y SO

so that ay :Cl(€0) <c§€1) <---<c
the numbers ag), R al(cl), b,(cl), e b,(cl) in increasing order and so that there are
no repetitions. Of course, the smallest of these numbers is a; and the largest is
by, otherwise the Py,..., P, would not cover P.

It is obvious that
i. every interval (a,(cj ), b,(cj )] is the union of some successive among the intervals

0 1 mp—1 m
(e e, (e e,

](ka) = by,. This simply means that we rename

ey

‘We now set

Pisin = (770, ] o (i, efi)

1yeenyin
for 1 <iy <mq,...,1<i, <m,.

It is clear that the P;, _; ’s result from P by subdivision of its edges. It is
also almost clear that

.....

ii. the intervals among the F;, . ; which belong to a P; result from it by sub-
division of its edges (this is due to i).

ili. every P;, . ;, isincluded in exactly one from P, ..., P, (because the Py, ..., P
are disjoint and cover P).

We now calculate, using Lemma 4.1 for the first and third equality and
grouping together the intervals F;, . ;. which are included in the same P; for
the second equality:

vol, (P) = > voly (Pi.....i,)

1<iy<my,...,1<in <my

_ Z Z vol, (P, ,...in)

717L

Lemma 4.3 Let P, Py,..., P, be open-closed intervals and Py, ..., P, be pair-
wise disjoint. If Py U---U P, C P, then vol,(Py) + -+ - + vol,(P;) < vol,(P).

Proof: We know from Proposition 1.11 that P\ (PLU---UPF) =P/ U---UP},
for some pairwise disjoint open-closed intervals Pj, ..., P}. Then P = P U---U
P UP{U---UP] and Lemma 4.2 now implies that vol,,(P) = vol,,(P1) +--- +
vol,,(Py) + vol, (P{) + - - - 4+ vol, (P]) > vol,,(P1) + - - - + vol,(F)).
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Lemma 4.4 Let P, Py,..., P, be open-closed intervals. If P C PLU---U P,
then vol, (P) < vol,(Py) + - -+ + vol,(P)).

Proof: We first write P = P{U- - -UP/ where P]f = P;NP are open-closed intervals
included in P. We then write P = P{U(Pj\ P{)U---U(P/\ (P{U---UP/_})).
Each of these [ pairwise disjoint sets can, by Proposition 1.11, be written as a
finite union of pairwise disjoint open-closed intervals: P/ = P and

P\ (P{U-—-UP_) =P U---UPY

for2 <j<lI.
Lemma 4.2 for the equality and Lemma 4.3 for the two inequalities imply

l m;
vol,(P) = vol,(P))+ 3 ( 3 Voln(anj)))
j=2 m=1
1 1
< voly(P) + Y volu(P)) <> vol ().
j=2 j=1
Lemma 4.5 Let QQ be a closed interval and Ry, ..., R; be open intervals so that

QC RiU---UR;. Then vol,(Q) < vol,(Ry) + -+ + vol, (Ry).

Proof: Let P and P; be the open-closed intervals with the same edges as () and,
respectively, R;. Then PC Q C Ry U---UR; C P U---U P, and by Lemma
4.4, vol,(Q) = vol,(P) < vol,(Py)+ -+ -+ vol,(P) = vol,(Ry) + - - - + vol, (Ry).

4.2 Lebesgue measure in R".

Consider the collection C of all open intervals in R™ and the 7 : C — [0, +o0]
defined by
7(R) = vol,(R) = (b1 — a1) -+ (bn — an)
for every R = (a1,b1) X -+ X (an,by) € C.
If we define

+oo
m(E) = inf { > vol(R;) | Ry, Ra, ... € C so that E C ujjiRj}
j=1

for all £ C R"™, then Theorem 3.2 implies that m} is an outer measure on R".
We observe that, since R" = U{>(—k, k) x -+ x (—k, k), for every E C R"
there is a countable covering of E by elements of C.

Now Theorem 3.1 implies that the collection

Ly =By,

of m; -measurable sets is a o-algebra of subsets of R" and, if m,, is defined as
the restriction of m} on L,, then m,, is a complete measure on (X, £,,).
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Definition 4.1 (i) L, is called the o-algebra of Lebesgue sets in R",
(i) m? is called the (n-dimensional) Lebesgue outer measure on R™ and

(iipai) m,, is called the (n-dimensional) Lebesgue measure on R".

Our aim now is to study properties of Lebesgue sets in R™ and especially
their relation with the Borel sets or even more special sets in R"”, like open sets
or closed sets or unions of intervals.

Theorem 4.1 Ewvery interval S in R™ is a Lebesque set and
my (S) = vol, (S).

Proof: Let Q = [a1,b1] X -+« X [an, by).

Since Q C (a1 —€,b1 +€) X -+ X (an — €,b, + €), we get by the definition
of m} that m}(Q) < vol,((a1 —€,b1 +€) x -+ X (ap, —€,b, +€)) = (b1 —a1 +
2€) - - - (bp, — an + 2€). Since € > 0 is arbitrary, we find m} (Q) < vol, (Q).

Now take any covering, @ C Ry U Ry U --- of @ by open intervals. Since @
is compact, there is [ so that Q@ C Ry U---U R; and Lemma 4.5 implies that
vol, (Q) < vol,(Ry) + - - + vol, (R;) < 32/ vol,(Ry). Taking the infimum of
the right side, we get vol,(Q) < m}(Q) and, hence,

m(Q) = vol,(Q).

Now take any general interval S and let aq, b1, ..., an, b, be the end-points of
its edges. Then Q' C S C Q”, where Q' = [a1+€,b; —€] X - - X [a,+€,b, —€] and
Q" =a1 —€,by+€] X+ X [an — € b, +€]. Hence m%(Q') < m*(S) <mk(Q"),
namely (by —a3 —2€) - - - (b, —a, —2€) <mX(S) < (by—ay+2€) - (b —an +2€).
Since € > 0 is arbitrary, we find

my (S) = vol, (S).

Consider an open-closed interval P and an open interval R. Take the open-
closed interval Pr with the same edges as R. Then m}(RNP) < m’(PrNP) =
vol,(Pr N P) and m} (RN P°¢) < m}(Pr N P°). Now Proposition 1.11 implies
PrNP¢ = Pr\P = P{U---UP] for some pairwise disjoint open-closed intervals
Pl,...,P,. Hence m (RN P°) < mi(P])+---+m}(P,) = vol,(P{) + - +
vol, (P]). Altogether, m} (RN P) 4+ m’ (RN P°) < vol,(Pr N P) + vol,(P) +
.-+ +vol,(Py) and, by Lemma 4.2, this is = vol,, (Pg) = vol, (R). We have just
proved that

my (RN P)+m; (RN P <vol,(R).

Consider any open-closed interval P and any E C R"™ with m}(E) < +o0.
Take, for arbitrary € > 0, a covering E C U;:TRJ» of E by open intervals so
that j;xf vol,(R;) < m}(E) + e. This implies m),(E N P) +m}(E N P°¢) <
S 2 mi (R 0 P) + 32 miy (Ry 0 P9) = 52 [mi (Ry 0 P) + mi,(R; N P)]
which, by the last result, is < Z;r:o(f vol, (R;) < m}(E) + e. This implies that

mi(E N P) +mi(E N P°) < m(E)
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and P is a Lebesgue set.

If T is any interval at least one of whose edges is a single point, then m} (T") =
vol,,(T) = 0 and, by Proposition 3.1, T is a Lebesgue set. Now, any interval
S differs from the open-closed interval P, which has the same sides as S, by
finitely many (at most 2n) T’s, and hence S is also a Lebesgue set.

Theorem 4.2 Lebesgue measure is o-finite but not finite.

Proof: We write R" = Uk*:o"le with Q = [k, k] X -+ x [—k, k], where
mp(Qr) = vol,(Qk) < +oo for all k. On the other hand, for all k, m,(R") >
m,(Qr) = (2k)™ and, hence, m,,(R") = +o0.

Theorem 4.3 All Borel sets in R™ are Lebesgue sets.

Proof: Theorem 4.1 says that, if £ is the collection of all intervals in R™, then
E C L,,. But then Br» = X(€) C L,.

Therefore all open and all closed subsets of R™ are Lebesgue sets.

Theorem 4.4 Let E C R"™. Then

(i) E € L, if and only if there is A, a countable intersection of open sets, so
that E C A and m%(A\ E) = 0.

(i) E € Ly, if and only if there is B, a countable union of compact sets, so that
BCFE and m(E\ B)=0.

Proof: (i) One direction is easy. If there is A, a countable intersection of open
sets, so that F C A and m} (A \ E) = 0, then, by Proposition 3.1, A\ F € L,
and, thus, E = A\ (A\ FE) € L,,.

To prove the other direction consider, after Theorem 4.2, Y7,Y5,... € L, so
that R = U;:;’({Yk and m,(Yy) < +oo for all k. Define Ey, = E N Y} so that
E = U:;“{Ek and m,, (Ey) < oo for all k.

For all k and arbitrary I € N find a covering Fj C U;r:fR;k’l) by open

intervals so that Z;;(Xf Voln(R;k’l)) < mn(Ek) + 3¢ and set UFD = U;r:C’TR§-k’Z).

Then Ej, C U®D and m,,(UFD) < m, (Ey) + 7%+ from which

1

k,l

Now set UV = UZ;'OlU(k’l). Then U® is open and F C U® and it is trivial
to see that UW \ E C U (U®D \ Ey), from which we get

—+oo —+oo
1 1
0 < (k) E — =z
mn, (U \ E) < ,;_1 my, (U N\ Ey) < 2 ok =T

Finally, define A = N-YUW" to get E C A and m,,(A\E) < m,(UV\E) < %
for all [ and, thus,
mn(A\ E) =0.
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(ii) If B is a countable union of compact sets so that B C E and m) (E\ B) =0,
then, by Proposition 3.1, E\ B € L,, and thus E = BU(E \ B) € L,,.

Now take E € L,. Then E¢ € L, and by (i) there is an A, a countable
intersection of open sets, so that E° C A and m,, (A \ E¢) = 0.

We set B = A€, a countable union of closed sets, and we get m,,(E \ B) =
mp(A\ E°) = 0. Now, let B = U;-”':OfFj, where each Fj is closed. We then write
Fj = U2 Fj i, where Fj, = F; N ([—k, k] x - -+ x [~k, k]) is a compact set. This
proves that B is a countable union of compact sets: B = U x)eNxNFj k-

Theorem 4.4 says that every Lebesgue set in R"™ is, except from a null set,
equal to a Borel set.

Theorem 4.5 (i) m,, is the only measure on (R", Brn) with my,(P) = vol, (P)
for every open-closed interval P.
(ii) (R™, Ly, my) is the completion of (R™, Brn,my,).

Proof: (i) If p is any measure on (R",Bgrn) with pu(P) = vol,(P) for all
open-closed intervals P, then it is trivial to see that u(P) = +oo for any un-
bounded generalised open-closed interval P: just take any increasing sequence
of open-closed intervals having union P. Therefore u(UjL, P;) = Z;nzl w(P;) =
E;-nzl my (Pj) = my(UjL, P;) for all pairwise disjoint open-closed generalised
intervals Py,..., P,. Therefore the measures u and m,, are equal on the alge-
bra A = {U;”Zle |m € N, Py,..., P, pairwise disjoint open-closed generalised
intervals}. By Theorem 2.4, the two measures are equal also on ©(A) = Brn.
(ii) Let (R™, Brn,m,) be the completion of (R", Brn,my,).

By Theorem 4.3, (R™, L,,m,) is a complete extension of (R"™, Brn,m,).
Hence, Br~» C L,, and m,(E) = m,(E) for every E € Bgrn.

Take any F € L,, and, using Theorem 4.4, find a Borel set B so that B C F
and m,(E \ B) = 0. Using Theorem 4.4 once more, find a Borel set A so that
(E\ B) C A and m,(A\ (F\ B)) = 0. Therefore, m,(A4) = m,(A\ (F\ B))+
mn(E\ B) =0.

Hence, we can write E = BU L, where B € Bg» and L = E\ B C A € Bg~
with m,,(A) = 0. After Theorem 2.3, we see that E has the form of the typical
element of Br~» and, thus, £,, C Br». This concludes the proof.

Theorem 4.6 Suppose E € L, with m,(E) < +oo. For arbitrary € > 0, there
are pairwise disjoint open intervals Ry, ..., Ry so that mp,(EA(R1U---UR))) < e.

Proof: We consider a covering F2 C U*:Cxl’ R} by open intervals such that

J
125 voly (RY) < m(E) + §.

Now we consider the open-closed interval PJ’» which has the same edges as
R);, and then E C U;%{ P} and E;;Oi vol, (P}) < mn(E) + 5.

We take m so that ;:fn 41 Vol (P]) < 5 and we observe the inclusions
E\(P/U---UP!

7)) S U, Pjand (P{U---UP,)\E C (U2 Pj)\ E. Thus,

mn(E\(P{U---UP},)) < Y12 1 vol,(P)) < § and m,,((P{U---UP;,)\E) <
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mn(Ujﬁ‘l’P]f) —m,(E) < §. Adding, we find
mp(EA(P{U---UP])) <e.

Proposition 1.11 implies that P{U---UP, = Py U---U P, for some pairwise
disjoint open-closed intervals P, ---, P, and, thus,

mp(EA(PLU---UR)) <e.

We consider Ry to be the open interval with the sarr}e edges as Pj so that
Uic:le < Ugi,‘:lpk and mn((U§§=1Pk) \ (U2=1Rk)) < Dko1 ma(Pe \ Ri) = 0.
This, easily, implies that

Mp(EA(RLU---UR))) =mu(EA(PLU---UP)) <e.

4.3 Lebesgue measure and simple transforma-
tions.

Some of the simplest and most important transformations of R™ are the trans-
lations and the linear transformations.
Every y € R" defines the translation 7, : R® — R" by the formula

y(z) =2 +y, xzeR"™

Then 7, is an one-to-one transformation of R™ onto R™ and its inverse trans-
formation is 7_,. For every E C R" we define

y+E={y+z|zeE}(=m(E)).
Every A > 0 defines the dilation [, : R® — R"™ by the formula
Ixz) = Az, ze€R".

Then [, is an one-to-one transformation of R™ onto R™ and its inverse trans-
formation is [ 1. For every E C R"™ we define

AE = {\z|z € B} (= I\(E)).

If S is any interval in R, then any translation transforms it onto another
interval (of the same type) with the same volume. In fact, if ai,b1,...,an,b,
are the end-points of the edges of S, then the translated y + .5 has y1 +a1,y1 +
b1,y Yn + Gn,Yn + by as end-points of its edges. Therefore vol,(y + S) =
((yl+b1)_(yl +a1)) e ((yn+b7z)_(yn+an)) = (br—a1) - (bn—an) = vol,(S).

If we dilate the interval S with ay,bq,...,ay,,b, as end-points of its edges
by the number A > 0, then we get the interval AS with Aai, Aby, ..., Aan, Ab,
as end-points of its edges. Therefore, vol, (AS) = (Aby — Aa1) -+ - (Ab, — Aay,) =
A" (by —aq) -+ (bn — an) = A"vol, (S).
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Another transformation is r, reflection through 0, with the formula
r(z) =—z, ze€R"™
This is one-to-one onto R™ and it is the inverse of itself. We define
~E={-z|v € B} (= r(E))

for all E C R™. If S is any interval with a1,b1,...,an, b, as end-points of its
edges, then —S is an interval with —by, —ay,...,—b,, —a, as end-points of its
edges and vol,(—S) = (—a1 + b1) -+ - (—an + by) = vol,(9).

After all these, we may say that n-dimensional volume of intervals is invari-
ant under translations and reflection and it is positive-homogeneous of degree n
under dilations.

We shall see that the same are true for n-dimensional Lebesgue measure of
Lebesgue sets in R™.

Theorem 4.7 (i) L, is invariant under translations, reflection and dilations.
That is, for all A € L,, we have that y+A, —A, A € L, for everyy € R™, A > 0.
(ii) m., is invariant under translations and reflection and positive-homogeneous
of degree n under dilations. That is, for all A € L,, we have that

mu(y+ A) = mu(A4), mu(—A) =my(A4), mp(AA) = A"m,(A)
for every y € R™, A > 0.

Proof: Let E C R™ and y € R™. Then for all coverings E C U;;OTRj by open
intervals we get y + E C U;rz‘xl’ (y+ Rj). Therefore, m}(y+ E) < Zj:f vol, (y +
R;) = Y. % vol,(R;). Taking the infimum of the right side, we find that
mk(y + Ei < m*(E). Now, applying this to y + F translated by —y, we get
my (E) = my(—y + (y+ E)) < m;(y + E). Hence

my,(y+ E) = m, (E)

for all E C R"™ and y € R™.
Similarly, —F C U;-';‘Xl’(—Rj), which implies m} (—FE) < E;r:(xf vol,(—R;) =
j:(xf vol,(R;). Hence m},(—E) < m} (E). Applying this to —FE, we also get
m}(E) =mk(—(—F)) <m}(—F) and, thus,

n n

for all £ C R™.
Also, AE C U5 (AR;), from which we get mj;(AE) < 3% vol,(AR;) =
A" jzof vol,(R;) and hence m}(AE) < A\"m}(E). Applying to y and to \E,

we find m}(E) = m},(5(AE)) < (3)"m}(AE), which gives
my (AE) = A"m),

n

(E).
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Suppose now that A € £,, and £ C R"™.

We have m(E N (y 4+ A)) + mi(EN (y + A)°) = m;, (v + [(—y + E) N 4])
+mi(y + [(—y + E) N A)) = mi((—y + E) N A) + m},((—y + E) N A°) =
mi(—y + E) =m}(F). Therefore, y+ A € L,,.

In the same way, m}(E N (—A)) + mi(EN(=A)¢) =mi(—[(-E) N A]) +
i (— [(~E) N A%)) = m3, ((~E) 0 A) +m3 ((—E) 0 A%) = mi;(~E) = m3(E).
Therefore, —A € L,,.

We, finally, have m(E N (AA)) + mj(E N (AA)°) = mi(M(+E) N 4]) +
m:(/\[(%E) N A) = A"mZ((%E) NA) + A" ms(( =
m?’ (E). Therefore, AA € L,,.

If Ae L, then m,(y+ A) = mi(y+ A) = m:(A) = m,(A), m,(—A) =
mr(—A) = mk(A) = m,(A) and m,(AA) = m?(AA) = A"m% (A) = A" m, (A).

Reflection and dilations are special cases of linear transformations of R". As
is well known, a linear transformation of R™ is a function 7' : R™ — R such
that

T(:C + y) = T(JE) + T(y) ) T(HI) = HT(:C) ) v,y € R", kK € R,

and every such T has a determinant, det(T') € R. In particular, det(r) = (—1)"
and det(ly) = A™.

We recall that a linear transfomation 7' of R™ is one-to-one and onto R"
if and only if det(T) # 0. Moreover, if det(T) # 0, then T~! is also a linear
transformation of R" and det(T~!) = (det(7T"))~!. Finally, if T, Ty, T» are linear
transformations of R™ and T = T o Ty, then det(T) = det(71) det(T).

Theorem 4.8 Let T : R™ — R"™ be a linear transformation. If A € L,,, then
T(A) € L, and
mup(T(A)) = | det(T)| m,(A).

If | det(T)| = 0 and m,,(A) = +oo, we interpret the right side as 0 - (+00) = 0.

Proof: At first we assume that det(7T") # 0.

If T has the form T(x1,x9,...,2,) = (Ax1,22,...,2,) for a certain A €
R\ {0}, then det(T) = X and, if P = (a1,b1] x (az,bs] X -+ X (an, by, then
T(P) = ()\G,l, )\bl] X (02, bQ} X X (an, bn] or T(P) = [)\bh )\al) X (CLQ, bg] X X
(an, by], depending on whether A > 0 or A < 0. Thus T(P) is an interval and
mn(T'(P)) = [Almn(P) = | det(T')[mn (P).

If T(Il,$27 ey L1, Ly g1y - - - ,In) = (IL‘i,IEQ, ey Lj—1, X1, Ljg1y - - - ,In)
for a certain 7 # 1, then det(T) = —1 and, if P = (a1,b1] X (ag,ba] X -+ X
(ai,l, bifl] X (ai, bl] X (ai+1, bi+1] X X (am bn], then T(P) = (ai, bz] X ((127 bz] X
s X (ai,l, bifl] x (a1, bl] X (@11, bi+1] X e X (CLT“ bn] Thus T(P) is an interval
and m,(T'(P)) = m,(P) = |det(T)|m,(P).

If T(xl, ey L1 Xy L1y e - - ,.Zn) = (xl, ey Lj1,X4 + L1y Ljt1y-- - ,fﬂn) for
a certain ¢ # 1, then det(T) = 1 and, if P = (a1,b1] x -+ X (aj_1,b;i—1] X
(ai, b;] X (ajg1,big1] X -+ X (ap, by], then T(P) is not an interval any more but
T(P) = {(y1,---,yn) |y; € (a;,bj] for j # i,y; —y1 € (ai,b;]} is a Borel set
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and hence it is in £,,. We define the following three auxilliary sets: L =
(@1,b1] x -+ x (ai—1,bi—1] x (a; + a1,b; + b1] X (@it1,bip1] X -+ X (an,byl,
M = {(y1,---,yn)|y; € (a;,bj] for j # i,a; +a1 < y; < a;+y1} and N =
{(y1s---,yn) ly; € (a;,b5] for j # i,b; + a1 < y; < by +y1}. It is easy to see
that all four sets, T'(P), L, M, N, are Borel sets and T(P)NM =0, LN N =,
T(P)UM = LUN and that N = zo+ M, where g = (0,...,0,b;—a;,0,...,0).
Then m,(T(P)) + mp(M) = myp(L) + my(N) and m, (M) = m,(N), implying
that m, (T (P)) = mp(L) = my,(P) = | det(T)|my(P), because L is an interval.

Now, let T be any linear transformation of the above three types. We have
shown that

(T (P)) = | det(T)|mn (P)

for every open-closed interval P. If R = (a1,b1) X -+« X (an,by) it is easy to
see, just as in the case of open-closed intervals, that T(R) is a Borel set. We
consider P; = (ay,b1] X+ -+ X (an, by] and Py = (a1,b1 —€] X - - X (an, b, — €] and,
from P, C R C P, we get T(P,) C T(R) C T(Py). Hence |det(T)|my(P2) <
mn(T(R)) < |det(T)|my(P1) = | det(T)|m,, (R) and, taking the limit as e — 0+,
we find

ma(T(R)) = | det(T) m (R)

for every open interval R.
Let, again, T be any linear transformation of one of the above three types.
Take any £ C R™ and consider an arbitrary covering £ C U R; by open

intervals. Then T'(E) C U/5{T(R;) and hence m;,(T(E)) < Z+ 1M (T(R;)) =

| det(T)| S F 121 Mn(R;). Taking the infimum over all coverings, we conclude
m,, (T(E)) < [det(T)|m;, (E).

If T is any linear transformation with det(T") # 0, by a well-known result of
Linear Algebra, there are linear transformations 17, ..., Tw, where each is of one
of the above three types so that T'=1T} o--- o Ty. Applying the last result re-
peatedly, we find m* (T(F)) < |det(Th)| - - | det(Tw)|m: (E)| = | det(T)|m}(E)
for every E C R™. In this inequality, use now the set T(E) in the place
of E and T~! in the place of T, and get m}(E) < |det(T~Y)|m}(T(E)) =
|det(T)| = m (T(E)). Combining the two inequalities, we conclude that

m,(T(E)) = [ det(T)|m, (E)
for every linear transformation T with det(T") # 0 and every E C R".
Let A € L,,. For all E C R" weget m;‘L(EﬂT( )+ mi(EN(T(A))°

my, (T(T~H(E) N A)) + m, (T(TH(E) N A9)) = | det(T)|[m;, (T H(E ?

" )
m* (T~YE)NA®)] = | det(T)|m}(T~1(E)) = m (F). This says that T(A) €
Moreover,

) =
A) +
Ly,

mn(T(A)) = m;,(T(A)) = | det(T)|m;,(A) = [det(T)[my(A).

n

If det(T) = 0, then V = T(R"™) is a linear subspace of R™ with dim(V) <
n — 1. We shall prove that m, (V) = 0 and, from the completeness of m,,, we
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shall conclude that T'(A) C V is in £, with m,(T(A)) = 0 = |det(T)|m,(A)
for every A € L,,.

Let {f1,..., fm} be a base of V' (with m < n — 1) and complete it to a base
{fi,--+y fms fm+1s- -, fn} of R™. Take the linear transformation S : R — R"
given by

S(xifi+ -+ anfn) = (x1,...,20).

Then S is one-to-one and, hence, det(S) # 0. Moreover
S(V)=A{(z1,...,2m,0,...,0)|z1,..., 2z, € R}.

We have S(V) = U2 Qx, where Q) = [—k, k] x - x [k, k] x {0} x - - - x {0}
Each Qy is a closed interval in R™ with m,(Qy) = 0. Hence, m,(S(V)) = 0
and, then, m,, (V) = | det(S)|~tm,(S(V)) = 0.

If b,by,...,b, € R™, then the set
M:{b-l—lilbl+-"+Hnbn|0§1€1,...,linSl}

is the typical closed parallelepiped in R™. One of the vertices of M is b and
b1,...,b, (interpreted as vectors) are the edges of M which start from b. For
such an M we define the linear transformation 7' : R® — R" by T(z) =
T(x1,...,2n) = x1by + -+ + xpb, for every x = (z1,...,2,) € R®. We also
consider the translation 7, and observe that

M =m (T(QO))a

where Qo = [0,1]™ is the unit qube in R™. Theorems 4.7 and 4.8 imply that M
is a Lebesgue set and

Mo (M) = my (T(Qo)) = | det(T)[mn(Qo) = | det(T)].

The matrix of T' with respect to the standard basis {e1,...,e,} of R™ has as
columns the vectors T'(e1) = by, ..., T(e,) = b,. We conclude with the rule that
the Lebesgue measure of a closed parallelepiped is given by the absolute value of
the determinant of the matriz having as columns the sides of the parallelepiped
starting from one of its vertices. Of course, it is easy to see that the same is
true for any parallelepiped.

4.4 Cantor set.

Since {z} is a degenerate interval, we see that m,, ({z}) = vol,,({z}) = 0. In fact,
every countable subset of R™ has Lebesgue measure zero: if A = {z1,2,...},
then m,(A) = 305 my, ({zx}) = 0.
The aim of this section is to provide an uncountable set in R whose Lebesgue
measure is zero.
We start with the interval
Iy = [07 1]7
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then take

3 3’
next 11 211 12 71 8
I =o. 6] Y [5’5} Y [575} Y [571}7

and so on, each time dividing each of the intervals we get at the previous stage
into three subintervals of equal length and keeping only the two closed subin-
tervals on the sides.

Therefore, we construct a decreasing sequence (I,,) of closed sets so that
every I, consists of 2" closed intervals all of which have the same length 3%
We define

C=n>1I,

and call it the Cantor set.

C' is a compact subset of [0, 1] with my(C) = 0. To see this observe that for
every n, m1(C) < my(I,) = 2" - 3= which tends to 0 as n — +oo.

We shall prove by contradiction that C'is uncountable. Namely, assume that
C = {x1,xa,...}. We shall describe an inductive process of picking one from
the subintervals constituting each I,.

It is obvious that every x,, belongs to I, since it belongs to C. At the first
step choose the interval I(!) to be the subinterval of I; which does not contain
x1. Now, [ 1) includes two subintervals of Iy and at the second step choose the
interval I® to be whichever of these two subintervals of I()) does not contain zs.
(If both do not contain x5, just take the left one.) And continue inductively: if
you have already chosen 1"~V from the subintervals of I,,_1, then this includes
two subintervals of I,,. Choose as I(™) whichever of these two subintervals of
I=Y does not contain z,,. (If both do not contain ,,, just take the left one.)

This produces a sequence (I (")) of intervals with the following properties:
(i) 1™ C I,, for all n,
(ii) 1t C 1(»=1 for all n,
(iit) voly (1) = # — 0 and
(iv) z, ¢ I for all n.
From (ii) and (iii) we conclude that the intersection of all 1(™’s contains a single
point:

ST = {20}

for some zy. From (i) we see that g € I, for all n and thus zg € C. Therefore,
zo = x,, for some n € N. But then zo € I and, by (iv), the same point x,
does not belong to 1(™).

We get a contradiction and, hence, C' is uncountable.

4.5 A non-Lebesgue set in R.

We consider the following equivalence relation in the set [0,1). For any z,y €
[0,1) we write z ~ y if and only if z—y € Q. That ~ is an equivalence relation
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is easy to see:
(a) x ~ x, because t —x =0 € Q.
(b)Ifz ~y,thenz —y € Q, then y —x = —(z — y) € Q, then y ~ z.
(c)fz ~yand y ~ 2z, then z —y € Q and y — 2z € Q, then z — 2z =
(z—y)+ (y fz)EQ,thenxwz.

Using the Axiom of Choice, we form a set N containing exactly one element
from each equivalence class of ~. This means that:

(i) for every x € [0,1) there is exactly one T € N so that x — T € Q.

Indeed, if we consider the equivalence class of x and the element T of N from
this equivalence class, then x ~ T and hence z — T € Q. Moreover, if there are
twoZ,T7 € N sothat x — 7 € Q and v — T € Q, then x ~ T and = ~ T, implying
that N contains two different elements from the equivalence class of x.
Our aim is to prove that N is not a Lebesgue set.
We form the set
A= UTEQH[O,l) (N + 'I").

Diferent (N + r)’s are disjoint:
(ii) if 711,72 € QN [0,1) and 71 # ro, then (N 4+ 71) N (N 4+ r2) = 0.
Indeed, if z € (N 4+71)N (N +7r2), then z — 7,2 —ro € N. Butz ~ 2z —m

and & ~ x — 79, implying that N contains two different (since r; # ry) elements
from the equivalence class of z.

(iii) A € [0,2).

This is clear, since N C [0,1) implies N +r C [0,2) for all r € QN [0,1).

Take an arbitrary x € [0,1) and, by (i), the unique T € N with x — 7 € Q.
Since —1 < x — T < 1 we consider cases: if r=ax —Z € [0,1), thenz =T +1r €
N+r C A, whileifr =2—7 € (—1,0), then z+1 =T+(r+1) € N+(r+1) C A.
Therefore, for every x € [0,1) either x € A or z + 1 € A. It is easy to see that
exactly one of these two cases is true. Because if + € A and z + 1 € A,
then € N4+ r; and 2 +1 € N + ry for some r1,70 € QN [0,1). Hence,
x—ry,x+1—ry € N and N contains two different (since ro — 11 # 1) elements
of the equivalence class of x. Thus, if we define the sets

Ey={z€[0,1)|z € A}, Eo={z€0,1)|z+1€ A}

then we have proved that
(IV) El ] EQ = [O, 1), E1 n E2 = @
From (iv) we shall need only that [0,1) C Ey U Es.
We can also prove that
(V) EyU(Ba+1)=A, Eyn(By+1)=0.
In fact, the second is easy because Eq,Fs C [0,1) and hence Es + 1 C [1,2).
The first is also easy. If € Fy then x € A. If x € Es + 1 thenz —1 € Ey

and then z = (x — 1)+ 1 € A. Thus E; U (E2+ 1) € A. On the other hand,
if v € A C0,2), then, either z € AN[0,1) implying « € Ey, or z € ANJL,2)
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implying x —1 € Ey ice. * € Es + 1. Thus AC By U (Ey+1).
From (v) we shall need only that E1,Es +1 C A.

Suppose N is a Lebesgue set. By (ii) and by the invariance of mj under
translations, we get that m1(4) =3, cqnpo1) M1V +7) =32, cqnpo,1) m1(IV).
If mi(N) > 0, then my(A4) = +o0, contradicting (iii). If my(N) = 0, then
m1(A) = 0, implying by (v) that my(Fy) = my(F2 + 1) = 0, hence my(Ey) =
m1(Fz) =0, and finally from (iv), 1 =m1([0,1)) < mi(E1) + mi(E3) = 0.

We arrive at a contradiction and N is not a Lebesgue set.

4.6 Exercises.

1. If A€ £,, and A is bounded, prove that m,(A4) < +oco. Give an example
of an A € £,, which is not bounded but has my(A) < +o0.
2. The invariance of Lebesgue measure under isometries.

Let T : R® — R™ be an isometric linear transformation. This means that
T is a linear transformation satisfying |T(xz) — T'(y)| = |z — y| for every
z,y € R" or, equivalently, TT* = T*T = I, where T* is the adjoint of T'
and [ is the identity transformation.

Prove that, for every E € L,,, we have m, (T(E)) = m,(E).

3. A parallelepiped in R" is called degenerate if it is included in a hyper-
plane of R", i.e. in a set of the form b+ V, where b € R™ and V is a
linear subspace of R™ with dim(V) =n — 1.

Prove that a parallelepiped M is degenerate if and only if m,,(M) = 0.

4. State in a formal way and prove the rule
volume = base area x height
for parallelepipeds in R™.

5. Regularity of Lebesgue measure.

Suppose that A € L,,.
(i) Prove that there is a decreasing sequence (U;) of open sets in R™ so
that A C U; for all j and m,,(U;) — m,(A). Conclude that

my(A) = inf{m,(U)|U open D A}.

(ii) Prove that there is an increasing sequence (K;) of compact sets in R™
so that K; C A for all j and m,(K;) — my(A). Conclude that

my,(A) = sup{m,(K)| K compact C A}.

The validity of (i) and (ii) for (R™, £,,, m,,) is called regularity. We shall
study this notion in chapter 5.
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10.

An example of an my-null uncountable set, dense in an interval.

Let QN [0,1] = {z1, z2,...}. For every € > 0 we define
o € € R 1
U(€)_Uj§(x1_§7x]+§)a A_mngU(ﬁ)

(i) Prove that my(U(e)) < 2e.

(i) If € < 3, prove that [0,1] is not a subset of U (e).

(iii) Prove that A C [0, 1] and m;(A) = 0.

(iv) Prove that QN [0,1] C A and that A is uncountable.

Let A=Qn[0,1]. If Ry,..., Ry, are open intervals so that A C U R;,
prove that 1 < Z;nzl vol; (R;). Discuss the contrast to mj(A4) = 0.

. Prove that the Cantor set is perfect: it is closed and has no isolated point.

The Cantor set and ternary expansions of numbers.

+o0 a,
n=1 3n con-

(i) Prove that for every sequence (ay) in {0, 1,2} the series )
verges to a number in [0, 1].

(ii) Conversely, prove that for every number z in [0, 1] there is a sequence
(a,) in {0,1,2} so that = = 321> g&. Then we say that 0.a1as ... is a
ternary expansion of z and that a1, as,... are the ternary digits of
this expansion.

(iii) If 2 € [0,1] is a rational g%, where m = 1(mod 3) and N € N, then x
has exactly two ternary expansions: one is of the form 0.a; ...an_11000. ..
and the other is of the form 0.ay...any_10222... .

If z € [0,1] is either irrational or rational 5%, where m = 0 or 2(mod 3)
and N € N, then it has exactly one ternary expansion which is not of
either one of the above forms.

(iv) Let C be the Cantor set. If x € [0, 1], prove that x € C' if and only if
x has at least one ternary expansion containing no ternary digit 1.

The Cantor function.

Let Iy = [0,1],I1, Io, . . . be the sets used in the construction of the Cantor
set C. For each n € N define f,, : [0,1] — [0, 1] as follows. If, going from

left to right, Jln), ce Jz(:f)_l are the 2" — 1 subintervals of [0,1] \ I,,, then

define f,,(0) = 0, f,,(1) = 1, define f, to be constant - in Jén) for all
k=1,...,2" —1 and to be linear in each of the subintervals of I,, in such
a way that f, is continuous in [0, 1].

(i) Prove that | f,(2) — fru—1(2)| < 55= for alln > 2 and all z € [0,1]. This
implies that for every z € [0,1] the series fy(z) + 3,75 (fx(z) — fr1(z))
converges to a real number.

(ii) Define f(x) to be the sum of the series appearing in (i) and prove
that |f(x) — fn(z)| < 55= for all z € [0,1]. Therefore, f, converges to f
uniformly in [0, 1].

(iii) Prove that f(0) =0, f(1) = 1 and that f is continuous and increasing
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11.

12.

13.

14.

in [0, 1].

(iv) Prove that for every n: f is constant 2% in J,gn) forallk=1,...,2"—1.
(v) Prove that, if z,y € C and = < y and «,y are not end-points of the
same complementary interval of C, then f(x) < f(y).

This function f is called the Cantor function.

The difference set of a set.

(i) Let E C R with mj(E) > 0 and 0 < o < 1. Prove that there is a
non-empty open interval (a, b) so that mj(E N (a,b)) > a - (b— a).

(ii) Let E C R be a Lebesgue set with mi(E) > 0. Taking a = 2 in (i),
prove that EN (E + z) N (a,b) # 0 for all z with |z| < 2(b— a).

(iii) Let E C R be a Lebesgue set with my(E) > 0. Prove that the set
D(E) ={z—y|z,y € E}, called the difference set of E, includes some

open interval of the form (—¢,¢).

Another construction of a non-Lebesgue set in R.

(i) For any z,y € R define x ~ y if x —y € Q. Prove that ~ is an
equivalence relation in R.

(ii) Let L be a set containing exactly one element from each of the equiv-
alence classes of ~. Prove that R = U,cq(L + r) and that the sets
L+r, reQ, are pairwise disjoint.

(iii) Prove that the difference set of L (see exercise 4.6.11) contains no
rational number # 0.

(iv) Using the result of exercise 4.6.11, prove that L is not a Lebesgue set.

Non-Lebesgue sets are everywhere, 1.

We shall prove that every E C R with mj(E) > 0 includes at least one
non-Lebesgue set.

(i) Consider the non-Lebesgue set N C [0,1] which was constructed in
section 4.5 and prove that, if B C N is a Lebesgue set, then m;(B) = 0.
In other words, if M C N has mj(M) > 0, then M is a non-Lebesgue set.
(ii) Consider an arbitrary £ C R with mj(E) > 0. If « = 1—mj (), then
0 < a < 1, and consider an interval (a,b) so that mj(EN(a,bd)) > a(b—a)
(see exercise 4.6.11). Then the set N’ = (b — a)N + a is included in [a, b],
has mi(N’') = (1 —«) - (b—a) and, if M" C N’ has m§(M') > 0, then M’
is not a Lebesgue set.

(iii) Prove that E N N’ is not a Lebesgue set.

No-Lebesgue sets are everywhere, II.

(i) Consider the set L from exercise 4.6.12. Then E = U,eq(E N (L +1))
and prove that the difference set (exercise 4.6.11) of each E N (L + r)
contains no rational number # 0.

(ii) Prove that, for at least one r € Q, the set EN(L+7) is not a Lebesgue
set (using exercise 4.6.11).
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15.

16.

17.

18.

Not all Lebesgue sets in R are Borel sets and not all continuous functions
map Lebesgue sets onto Lebesgue sets.

Let f :[0,1] — [0, 1] be the Cantor function constructed in exercise 4.6.10.
Define g : [0,1] — [0, 2] by the formula

g(x) = f(z) + z, z € [0,1].

(i) Prove that g is continuous, strictly increasing, one-to-one and onto
[0,2]. Its inverse function g=' : [0,2] — [0,1] is also continuous, strictly
increasing, one-to-one and onto [0, 1].

(ii) Prove that the set ¢([0, 1] \ C'), where C is the Cantor set, is an open
set with Lebesgue measure equal to 1. Therefore the set E = g(C) has
Lebesgue measure equal to 1.

(iii) Exercises 4.6.13 and 4.6.14 give non-Lebesgue sets M C E. Consider
the set K = g~'(M) C C. Prove that K is a Lebesgue set.

(iv) Using exercise 1.6.8, prove that K is not a Borel set in R.

(v) g maps K onto M.

More Cantor sets.

Take an arbitrary sequence (e,) so that 0 < ¢, < L for all n. We split
Io = [0,1] into the three intervals [0, 2 — €], (3 —€1, 5 +€1), [2 +€1,1] and
form I as the union of the two closed intervals. Inductively, if we have
already constructed I,,_; as a union of certain closed intervals, we split
each of these intervals into three subintervals of which the two side ones
are closed and their proportion to the original is % — €,. The union of the

new intervals is the I,,.

We set K = N> 1,.

(i) Prove that K is compact, has no isolated points and includes no open
interval.

(ii) Prove that K is uncountable.

(iii) Prove that mq(l,) = (1 — 2¢1) -+ (1 — 2¢,,) for all n.

(iv) Prove that mq(K) = limy, 4 00(1 — 2€1) -+ (1 — 2€,).

(v) Taking €,, = 55 for all n, prove that m;(K) > 1 —e.

(Use that (1 —aq)---(1 —a,) > 1— (a1 + -+ + ay) for all n and all
ai,...,an € [0,1]).

(vi) Prove that m;(K) > 0 if and only if 7> €, < +oc0.

n=1

(Use the inequality you used for (v) and also that 1 —a < e for all a.)

Uniqueness of Lebesgue measure.

Prove that m,, is the only measure p on (R",Bgrn») which is invariant
under translations (i.e. u(E + z) = p(E) for all Borel sets E and all x)
and which satisfies ;1(Qp) = 1, where Qo = [—1,1] x -+ x [-1,1].

Let E C R be a Lebesgue set and A be a dense subset of R. If mi(EA(E+
x)) =0 for all x € A, prove that m(E) = 0 or my(E°) = 0.
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19. Let E C R be a Lebesgue set and 6 > 0. If my(E N (a,b)) > 6(b—a) for
all intervals (a,b), prove that mi(E°) = 0.
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Chapter 5

Borel measures

5.1 Lebesgue-Stieltjes measures in R.

Lemma 5.1 If —co <a <b < +00 and F : (a,b) — R is increasing, then

(i) for all x € [a,b) we have F(x+) = inf{F(y) |z < y},

(ii) for all x € (a,b] we have F(x—) =sup{F(y) |y < z},

(iii) if a <x <y < z<b, then F(z—) < F(z) < F(z+) < F(y) < F(z—) <
F(2) < F(=),

(iv) for all x € [a,b) we have F(z+) = lim,_,,4 F(y+),

(v) for all x € (a,b] we have F(z—) = lim,_,_ F(y+).

Proof: (i) Let M = inf{F(y)|z < y}. Then for every v > M there is some
t > x so that F(t) < ~. Hence for all y € (z,t) we have M < F(y) < v. This
says that F(z+) = M.

(i) Similarly, let m = sup{F(y) |y < x}. Then for every v < m there is some
t < x so that v < F(t). Hence for all y € (¢,2) we have v < F(y) < m. This
says that F(z—) = m.

(iii) F(z) is an upper bound of the set {F(y)|y < =} and a lower bound of
{F(y)|« < y}. This, by (i) and (ii), implies that F(z—) < F(z) < F(z+) and,
of course, F(z—) < F(z) < F(z+). Also, if z < y < z, then F(y) is an element
of both sets {F(y) |z < y} and {F(y) |y < z}. Therefore F(y) is between the
infimum of the first, F'(z+), and the supremum of the second set, F'(z—).

(iv) By the result of (i), for every v > F(z+) there is some ¢ > x so that
F(z+) < F(t) < 7. This, combined with (iii), implies that F'(z+) < F(y+) <
for all y € (z,t). Thus, F(z+) = lim,_.,4 F(y£).

(v) By (ii), for every v < F(x—) there is some t < x so that v < F(t) < F(z—).
This, combined with (iii), implies v < F(y%) < F(z—) for all y € (¢,z). Thus,
F(z—) =limy_,, F(y=L).

Consider now ag, by with —co < ag < by < 400 and an increasing function
F : (ap,bp) — R and define a non-negative function 7 acting on subintervals of
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(ag,bp) as follows:
7((a,0)) = F(b—) = F(a+),  7([a,b]) = F(b+) — F(a—),

7((a,b]) = F(b+) — F(a+), 7([a,b)) = F(b—) — F(a—).

The mnemonic rule is: if the end-point is included in the interval, then approach
it from the outside while, if the end-point is not included in the interval, then
approach it from the inside of the interval.

We use the collection of all open subintervals of (ag,bp) and the function
T to define, as an application of Theorem 3.2, the following outer measure on

(ao,bo)i

+oo
ui(B) = inf { 3" 7((a;,0,)) | B S USZ(a5,b,). (a5. ) < (ao,bo) for all 51}

j=1

for every E C (ag, bp).

Theorem 3.1 implies that the collection of pj-measurable sets is a o-algebra
of subsets of (ag, bp), which we denote by X, and the restriction, denoted up,
of u} on ¥ is a complete measure.

Definition 5.1 The measure up is called the Lebesgue-Stieltjes measure
induced by the (increasing) F : (ap,by) — R.

If F(x) = « for all x € R, then 7(5) = vol;(S) for all intervals S and, in
this special case, pp coincides with the 1-dimensional Lebesgue measure m; on
R. Thus, the new measure is a generalization of Lebesgue measure.

Following exactly the same procedure as with Lebesgue measure, we shall
study the relation between the o-algebra X and the Borel sets in (ag, bp).

Lemma 5.2 Let P = (a,b] C (ag,by) and a = ¢ < ¢ < ... <™ =p. If
P; = (=Y, cO], then 7(P) = 7(P1) + -+ + 7(Pny)-

Proof: A telescoping sum: 7(Py)+--+7(Pp) = it (F(cW+) = F(c=Y4)) =
F(b+) — F(a+) = 7((a,b]).

Lemma 5.3 If P, P1,..., P, are open-closed subintervals of (ag,bo), P1,..., P
are pairwise disjoint and P =Py U---U Py, then 7(P) =7(P1) 4+ --- + 7(F)).

Proof: Exactly one of Py, ..., P, has the same right end-point as P. We rename
and call it P;. Then exactly one of P, ..., P,_1 has right end-point coinciding
with the left end-point of P;. We rename and call it P,_;. We continue until
the left end-point of the last remaining subinterval, which we shall rename P,
coincides with the left end-point of P. Then the result is the same as the result
of Lemma 5.2.

Lemma 5.4 If P, Py,..., P, are open-closed subintervals of (ag,bo), P1,..., P
are pairwise disjoint and Py U---U P, C P, then 7(P1) + -+ 7(P) < 7(P).
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Proof: We know that P\ (P,U---UP,) = P{U---UP] for some pairwise disjoint
open-closed intervals P[,..., P/. By Lemma 5.3 we get 7(P) = 7(P1) +--- +
T(P) +7(P) + -+ 7(P) 2 7(P) + -+ 7(F).

Lemma 5.5 Suppose that P, Py, ..., P, are open-closed subintervals of (ag,bo)
and PC PyU---UP. Then 7(P) <7(P1)+---+7(P).

Proof: We write P = P{U---U P/, where P] = P; N P are open-closed intervals
included in P. Then write P = P{U (Py\ P{)U---U (P/\ (P{U---UP/_))).
Each of these [ pairwise disjoint sets can be written as a finite union of pairwise
disjoint open-closed intervals: P = P{ and
PIN(P{U---UP_)=P7U---uPY

for 2 <j <.

Lemma 5.3 (for the equality) and Lemma 5.4 (for the two inequalities) imply

l mj
)=t 35 (35 )

J_ m=

l

!
T(P))+ ) 7(P)) < ZT(PJ)

Jj=2

Lemma 5.6 Let Q be a closed interval and Ry, ..., R; be open subintervals of
(ag,bo). If Q C Ry U---URy, then 7(Q) < 7(R1) + -+ + 7(Ry).

Proof: Let Q = [a,b] and R; = (aj,b;) for j =1,...,l. We define for e > 0
Pe=(a—eb],  Pje=(a;b; — e
We shall first prove that there is some €y > 0 so that for all € < ¢;
P.CP U---UP.,.

Suppose that, for all n, the above inclusion is not true for e = =. Hence, for all n
there is x,, € (a—g, b] so that 2,, ¢ U_, (aj, b;—~]. By the Bolzano Weierstrass
theorem, there is a subsequence (z,, ) converging to some Z. Looking carefully
at the various inequalities, we get T € [a,b] and T ¢ Ué-:l(a,j,bj). This is a
contradiction and the inclusion we want to prove is true for some ¢y = nio If
€ < €g, then the inclusion is still true because the left side becomes smaller while
the right side becomes larger.
Now Lemma 5.5 gives for € < ¢ that

F(+)— F((a—¢) gz ((b; — €)+) — F(a;+))

Jj=1

and, using Lemma 5.1 for the limit as € — 0+,

l l
7(Q) = F(b+) — <> (F F(a;+)) =Y _7(R;).

Jj=1 Jj=1
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Theorem 5.1 Let F': (ag,by) — R be increasing. Then every subinterval S of
(ao,bo) is pi-measurable and

pr(S) =7(9).

Proof: Let Q = [a,b] C (ag, bo).
Then p5(Q) < 7((a —e,b+¢€)) = F((b+¢€)—) — F((a — €)+) for all small
enough € > 0 and, thus, p5(Q) < F(b+) — F(a—) = 7(Q).

oo

For every covering @ C U;;le by open subintervals of (ag, by), there is (by
compactness) [ so that @ C Ué-:le. Lemma 5.6 implies 7(Q) < 22:1 T(R;) <
E;r:(xf T(R;). Hence 7(Q) < p3(Q) and we conclude that

7(Q) = nr(Q)

for all closed intervals @ C (ag, bo).

I P = (,] C (a0, bo), then i3 (P) < 7((a,b+€)) = F((b+)—) — Fla+)
for all small enough ¢ > 0. Hence u5(P) < F(b+) — F(a+) = 7(P).

If R = (a,b) C (ao,bo), then ui(R) < 7((a,b)) = 7(R).

Now let P = (a,b], R = (¢, d) be included in (ag, by) and take Pr = (¢, d—€].

We write p(RNP) = pp((PRNP)U((d—e,d)NP)) < pp(PrNP)+
wi((d—e,d)) < 7(PrNP)+ F(d—) — F((d — €)+) by the previous results. The
same inequalities, with P¢ instead of P, give puj.(R N P°) < ph(Pr N P°) +
F(d—) — F((d — €)+). Taking the sum, we find (RN P) + (RN P°) <
7(PrN P) + p5(Pr N P +2[F(d—) — F((d — €)+)].

Now write Pr N P¢ = Py U---U P, for pairwise disjoint open-closed intervals
and get 7(Pr N P) + p(Pr N P¢) < 7(PROP) + Y5y iy (P) < 7(PR N P) +
22:1 T(P;) = 7(Pgr) by the first results and Lemma 5.3.

Therefore pi(R N P) + ph(RN P¢) < 7(Pgr) + 2[F(d—) — F((d — ¢)+)] =
F((d—e€)+) — F(ct) 4+ 2[F(d—) — F((d — €)+)] and, taking limit, p.(RN P) +
Wi (RO P) < Fd-) - F(c+) = (R).

We proved that

pp(RNP) + pp(ROPY) < 7(R)

for all open intervals R and open-closed intervals P which are C (aq, bp).

Now consider arbitrary E C (ag,by) with uh(F) < 4+o0o0. Take a covering
EC U;r:“ij by open subintervals of (ag,bg) so that Z;r:{ T(R;) < pi(E) +e.
By o-subadditivity and the last result we find p5(E N P) + ph(E N P¢) <

725 (0e(Ry N P) + pip(Ry N P)) < 327 7(Ry) < pip(E) + €.

Taking limit as € — 04, we find

pr(ENP) + pp(ENP) < pp(E),

concluding that P € Xp.
If Q = [a,b] C (ag, by), we take any (ax) in (ag,bo) so that ax T a and, then,
Q = N5 (ak, b] € Xp. Moreover, by the first results,



If P = (a,b] C (ao,bo), we take any (ax) in (a,b] so that ax | a and we get
that i (P) = 1o o [0k, b)) = i - oo (F(b+) — Flax—)) = F(b+) —
F(a+) = 7(P).

If T = [a,b) C (ag,by), we take any (bg) in [a,b) so that by T b and we
get that T = U >[a,by] € Zp. Moreover, up(T) = limy— o0 pr([a,by]) =
limg— 4 oo (F(bk+) — F(a—)) = F(b—) — F(a—) = 7(T).

Finally, if R = (a,b) C (ao, bg), we take any (ax) and (bg) in (a,b) so that
ap | a, by T band a; < b;. Then R = sz{[ak,bk] € Y. Moreover, up(R) =
limg— 400 ,up([ak., bk]) = limk_,+oo(F(bk+)—F(ak—)) = F(b—)—F(CH—) = T(R)

Theorem 5.2 Let F : (ag,bg) — R be increasing. Then pp is o-finite and it
is finite if and only if F is bounded. Also, pp((ag,bo)) = F(bo—) — F(ao+).

Proof: We consider any two sequences (a) and (by) in (ag, by) so that ay | ao,
bi T bo and a1 < by. Then (ag,bo) = U{ S [ak, bi] and pp(lak, b)) = F(bp+) —
F(ar—) < +oo for all k. Hence, up is o-finite.

Since pp((ag,bo)) = F(bg—) — F(ap+), if pp is finite, then —oco < F(ag+)
and F(bp—) < 4o0. This implies that all values of F' lie in the bounded interval
[F'(ao+), F(bp—)] and F is bounded. Conversely, if F' is bounded, then the
limits F'(ao+), F'(bp—) are finite and pp((ao, bo)) < +o0.

It is easy to prove that the collection of all subintervals of (ag,bo) generates
the o-algebra of all Borel sets in (ag,bp). Indeed, let £ be the collection of all
intervals in R and F be the collection of all subintervals of (ag, bo). It is clear
that F = &1 (a0, bp) and Theorems 1.2 and 1.3 imply that

Bag,b0) = Br (a0, bo) = X(€)](ao, bo) = L(F).

Theorem 5.3 Let F : (ag,by) — R be increasing. Then all Borel sets in
(ag,bo) belong to Xp.

Proof: Theorem 5.1 implies that the collection F of all subintervals of (ag, by) is
included in X . By the discussion of the previous paragraph, we conclude that
B(ambo) = Z(f) CYp.

Theorem 5.4 Let F': (ag,bp) — R be increasing. Then for every E C (ag,bp)
we have

(i) E € X if and only if there is A C (ag,bg), a countable intersection of open
sets, so that E C A and ui(A\ E) = 0.

(ii) E € g if and only if there B, a countable union of compact sets, so that
B CE and u,(E\ B) =0.

Proof: The proof is exactly the same as the proof of the similar Theorem 4.4.
Only the obvious changes have to be made: m,, changes to ur and m}, to uj,
R" changes to (ag,bg), vol,, changes to 7 and £,, changes to Y.

Therefore, every set in Xg is, except from a pp-null set, equal to a Borel
set.
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Theorem 5.5 Let F': (ag,by) — R be increasing. Then

(i) pr is the only measure on ((ao, bo), B(ag,by)) With pr((a,b]) = F(b+)—F(a+)
for all intervals (a,b] C (ag, bo).

(i1) ((ao,bo),ZF,,uF) is the completion of ((a07b0)73(a0,b0);,UF)-

Proof: The proof is similar to the proof of Theorem 4.5. Only the obvious
notational modifications are needed.

It should be observed that the measure of a set {z} consisting of a single
point = € (ag, bo) is equal to up({z}) = F(z+) — F(z—), the jump of F at x.
In other words, the measure of a one-point set is positive if and only if F' is
discontinuous there. Also, observe that the measure of an open subinterval of
(ag,bo) is 0 if and only if F is constant in this interval.

It is very common in practice to consider the increasing function F' with the
extra property of being continuous from the right. In this case the measure of
an open-closed interval takes the simpler form

pr((a,b]) = F(b) — F(a).
Proposition 5.1 shows that this is not a serious restriction.

Proposition 5.1 Given any increasing function on (ag,bo) there is another
increasing function which is continuous from the right so that the Lebesgue-
Stieltjes measures induced by the two functions are equal.

Proof: Given any increasing F : (ag,by) — R we define Fy : (ag,b9) — R by
the formula
Fy(z) = F(x+), x € (ag,bo)

and it is immediate from Lemma 5.1 that Fj is increasing, continuous from the
right, i.e. Fy(z+) = Fo(x) for all z, and Fy(z+) = F(z+), Fo(z—) = F(z—)
for all x. Now, it is obvious that Fj; and F' induce the same Lebesgue-Stieltjes
measure on (ag, bp), simply because the corresponding functions 7(S) (from
which the construction of the measures ug,, ptp starts) assign the same values
to every interval S C (aq, bp).

The functions Fy and F' of Proposition 5.1 have the same jump at every x
and, in particular, they have the same continuity points.

5.2 Borel measures.

Definition 5.2 Let X be a topological space and (X, X, 1) be a measure space.
The measure 1 is called a Borel measure on X if Bx C X, i.e. if all Borel
sets in X are in X.

The Borel measure p is called locally finite if for every x € X there is
some open neighborhood U, of x (i.e. an open set containing x) such that
w(U,) < +o0.
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Observe that, for p to be a Borel measure, it is enough to have that all open
sets or all closed sets are in 3. This is because Bx is generated by the collections
of all open or all closed sets and because X is a g-algebra.

Examples

The Lebesgue measure on R™ and, more generally, the Lebesgue-Stieltjes mea-
sure on any generalized interval (ag,bg) (induced by any increasing function)
are locally finite Borel measures. In fact, the content of the following theo-
rem is that the only locally finite Borel measures on (ag,bg) are exactly the
Lebesgue-Stieltjes measures.

Lemma 5.7 Let X be a topological space and pv a Borel measure on X. If u is
locally finite, then pu(K) < 400 for every compact K C X.

If w is a locally finite Borel measure on R™, then u(M) < +oo for every
bounded M C R".

Proof: We take for each z € K an open neighborhood U, of x so that u(U,) <
+o00. Since K C U,egU, and K is compact, there are x1,...,x, so that
K CUp_,Uy,. Hence, u(K) < 37 u(Us,) < 400.

If M C R" is bounded, then M is compact and (M) < u(M) < +oo.

Theorem 5.6 Let —oo < ag < by < 400 and ¢o € (ag, by). For every locally
finite Borel measure p on (ag,bg) there is a unique increasing and continuous
from the right F : (ag,bo) — R so that = pp on By p,) and F(co) = 0. For
any other increasing and continuous from the right G : (ag,bp) — R, it is true
that p = pg if and only if G differs from F by a constant.

Proof: Define the function

_ J ul(co,m]), ifco <@ < by,
Flz) = { —p((2, c0]), if ap <z < co.

By Lemma 5.7, F' is real valued and it is clear, by the monotonicity of p,
that F' is increasing. Now take any decreasing sequence (x,,) so that =, | . If
¢o < x, by continuity of p from above, lim,—, 4o F(2,) = limy,— o0 p((co, 2n]) =
p((co, x]) = F(x). Also, if z < ¢, then x,, < ¢q for large n, and, by continuity of
p from below, lim, o0 F(2,) = —limy— 400 4((2n, co]) = —p((x, c0]) = F(x).
Therefore, F' is continuous from the right at every z.

If we compare p and the induced pp at the intervals (a, b], we get pp((a,b]) =
F(b)—F(a) = pu((a, b)), where the second equality becomes trivial by considering
cases: a < b < cp,a <co<band cy <a <b. Theorem 5.5 implies that upr =
on B(ao,bo)

If G is increasing, continuous from the right with ug = pu(= pr) on Ba, b))
then G(z) — Gleo) = pe(cora]) = pr((cora]) = Flz) — Fleo) for all a >
and, similarly, G(cp) — G(z) = pe((z,co]) = pr((z,co]) = F(co) — F(z) for all
x < ¢g. Therefore F, G differ by a constant: G — F = G(cg) — F(co) on (ag, by).
Hence, if F(cp) = 0= G(cp), then F,G are equal on (ag, by).
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If the locally finite Borel measure p on (ag, by) satisfies the p((ao, co]) < 400,
then we may make a different choice for F' than the one in Theorem 5.6. We
add the constant p((ao, co]) to the function of the theorem and get the function

F(z) = pn((ag, z]), z € (ao, bp).

This last function is called the cumulative distribution function of .

A central notion related to Borel measures is the notion of regularity, and
this is because of the need to replace the general Borel set (a somewhat obscure
object) by open or closed sets.

Let E be a Borel subset in a topological space X and p a Borel measure on
X. It is clear that pu(K) < u(E) < p(U) for all K compact and U open with
K C ECU. Hence

sup{p(K) | K compact C E} < u(E) <inf{u(U)|U open D E}.

Definition 5.3 Let X be a topological space and i a Borel measure on X. Then
w is called regular if the following are true for every Borel set E in X :

(i) W(E) = inf{u(U) | U open 2 B},

(ii) u(E) = sup{u(K) | K compact C E}.

Therefore, p is regular if the measure of every Borel set can be approximated
from above by the measures of larger open sets and from below by the measures
of smaller compact sets.

Proposition 5.2 Let O be any open set in R™. There is an increasing sequence
(Kyn) of compact subsets of O so that int(K,,) T O and, hence, K,, T O also.

Proof: Define the sets
1
Km:{erHﬂ <m and |y —z| > — for ally¢0},
m

where |22 = 22 + - + 22 for all x = (z1,...,2,).

The set K, is bounded, since || < m for all x € K,,.

If (x;) is a sequence in K, converging to some x, then, from |z;| < m for
all j, we get || < m, and, from |y — z;| > - for all j and for all y ¢ O, we get
ly — x| > % for all y ¢ O. Thus, = € K,,, and K,, is closed.

Therefore, K, is a compact subset of O and, clearly, K,, C K,,+1 C O for
all m. Hence, int(K,,) C int(K,,+1) for every m.

Now take any z € O and an ¢ > 0 such that B(z;2¢) C O. Consider,
also, M > max(|z| + €,1). It is trivial to see that B(z;e) C Ky and thus
x € int(Kpr). Therefore, int(K,,) T O. Since int(K,,) C K,, C O, we conclude
that K,, 1 O.

-
c

Theorem 5.7 Let X be a topological space with the property that for every
open set O in X there is an increasing sequence of compact subsets of O whose
interiors cover O.
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Suppose that p is a locally finite Borel measure on X. Then:

(i) For every Borel set E and every e > 0 there is an open U and a closed F so
that F CE CU and p(U\ E),u(E\ F) < €. If also u(E) < 400, then F can
be taken compact.

(ii) For every Borel set E in X there is A, a countable intersection of open sets,
and B, a countable union of compact sets, so that BC E C A and u(A\ E) =
p(E\ B) =0.

(1) p is regular.

Proof: (a) Suppose that pu(X) < +oo.

Consider the collection S of all Borel sets E in X with the property expressed
in (i), namely, that for every e > 0 there is an open U and a closed F so that
FCECUand p(U\E),u(E\ F) <e.

Take any open set O C X and arbitrary € > 0. If we consider U = O, then
w(U \ O) = 0 < e. By assumption there is a sequence (K,,) of compact sets
so that K, T O. Therefore, O \ K,, | 0 and, since u(O \ K1) < p(X) < +oo,
continuity from above implies that lim,, 1o (O \ K,,) = 0. Therefore there
is some m so that u(O\ F) <, if F = K,,.

Thus, all open sets belong to S.

If E € S and ¢ > 0 is arbitrary, we find an open U and a closed F so
that F C F C U and p(U \ E),u(E \ F) < e. Then F° is open, U® is closed,
U CE°CFand u(F\E®)=pu(E\F) <eand u(E°\U°) = u(U\ E) <e.
This implies that E€ € S.

Now, take E1,Fs,... € S and F = Uj':O‘ij. For € > 0 and each E; take
open U; and closed Fj so that F; C E; C U; and u(U; \ Ej), w(E; \ Fj) < 57.
Define B = Uj':“l’Fj and the open U = U;':o‘ij so that B C E C U. Then
U\E CUX(U;\ Ej) and E\ B C UL (E; \ Fj). This implies u(U \ E) <
Zj:(xf w(U;\Ej) < E;r:(xf 57 = € and, similarly, u(E'\ B) < e. The problem now
is that B is not necessarily closed. Consider the closed sets FJf =FUuU---UFj,
so that F} 1 B. Then E\ Fj | E'\ B and, since u(E \ F{) < p(X) < +oo,
continuity from below implies u(E \ F}) | u(E \ B). Therefore there is some j
so that u(E \ F}) < e. The inclusion F} C E is clearly true.

We conclude that E = U;LOTEJ- € S and S is a o-algebra.

Since S contains all open sets, we have that Bx C S and finish the proof of

the first statement of (i) in the special case pu(X) < +oo.
(b) Now, consider the general case, and take any Borel set F in X which is
included in some compact set K C X. For each x € K we take an open
neighborhood U, of x with u(U,) < 4+00. By the compactness of K, there exist
Z1,...,2n € K so that K C Uy_,U,,. We form the open set G = U;_,U,, and
have that

E CQG, 1(G) < +o0.

We next consider the restriction pg of g on G, which is defined by the
formula

ne(A) = p(ANG)

65



for all Borel sets A in X. It is clear that pg is a Borel measure on X which is
finite, since pe(X) = p(G) < +o0.

By (a), for every € > 0 there is an open U and a closed F' so that F C E C U
and pug(U \ E),uc(E\ F) < e. Since E C G, we get p((GNU)\ E) =
WGN(U\E)) = pa(U\E) < eand p(E\F) = p(GN(E\F)) = pa(B\F) <e.

Therefore, if we consider the open set U' = GNU, we get F C E C U’ and

w(U'\ E),u(E\ F) < € and the first statement of (i) is now proved with no
restriction on u(X) but only for Borel sets in X which are included in compact
subsets of X.
(c) We take an increasing sequence (K,,) of compact sets so that int(K,,) T X.
For any Borel set E in X we consider the sets £ = EN K; and F,, = EN
(Km \ Kpp—1) for all m > 2 and we have that E = Ujf:olEm. Since E,, C K,
(b) implies that for each m and every e > 0 there is an open U, and a closed
Fy, so that Fy, C Eyy C Uy, and p(Up \ Ern ), (B \ Fi) < 5% . Now define the
open U = U™ U, and the closed (why?) F = U/ F,,, so that F C E C U.
As in the proof of (a), we easily get (U \ E),u(E\ F) < e.

This concludes the proof of the first statement of (i).

(d) Let u(E) < +00. Take a closed F so that F C E and u(FE \ F) < ¢, and
consider the compact sets K,,, of part (¢). Then the sets F,,, = F N K, are
compact and F,,, 1 F. Therefore, E\ F,, | E\ F and, by continuity of u
from above, u(E \ F,,) — p(E \ F). Thus there is a large enough m so that
w(E\ F,,) < e. This proves the second statement of (i).

(e) Take open U; and closed F)j so that F; C E C U; and u(U;\E), u(E\F;) < %
Define A = ﬂj:“ij and B = UJZOTFj so that B C F C A. Now, for all j we
have p(A\ E) < p(U; \ E) < % and p(E \ B) < p(E\ Fj) < % Therefore,
w(A\ E) = p(E \ B) = 0. We define the compact sets K;,, = F; N K,,, and
observe that B = U(; m)enxNKjm. This is the proof of (ii).

(f) If u(E) = +o0, it is clear that p(E) = inf{u(U)|U open and E C U}.
Also, from (ii), there is some B = Ut K! & where all K/, are compact, so
that B C E and pu(B) = pu(F) = 4o0o. Consider the compact sets K, =
K{U---UK], which satisfy K,,, T B. Then pu(K,,) — u(B) = u(E) and thus
sup{u(K) | K compact and K C E} = u(E).

If u(E) < +oo, then, from (a), for every € > 0 there is a compact K and
an open U so that K C EF C U and pu(U \ E),u(E \ K) < e. This implies
w(E) —e < p(K) and p(U) < u(E) + € and, thus, the proof of (iii) is complete.

Lemma 5.8 Let X be a topological space which satisfies the assumptions of
Theorem 5.7. LetY be an open or a closed subset of X with its subspace topology.
Then'Y also satisfies the assumptions of Theorem 5.7.

Proof Let Y be open in X. If O is an open subset of Y, then it is also an open
subset of X. Therefore, there is an increasing sequence (K,,,) of compact subsets
of O so that intx (K,,) T O, where intx (K,,) is the interior of K, with respect
to X. Since K,,, CY and Y is open in X, it is clear that inty (K,,) = intx (Kp,)
and, thus, inty (K,,) T O.

Let Y be closed in X and take any O C Y which is open in Y. Then
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O = 0'NY for some O’ C X which is open in X and, hence, there is an
increasing sequence (K ) of compact subsets of O’ so that intx (K/,) T O'. We
set K, = K], NY and have that each K, is a compact subset of O. Moreover,
intx(K/,)NY Cinty (K,,) for every m and, thus, inty (K,,) T O.

Examples
1. Proposition 5.2 implies that the euclidean space R satisfies the assumptions
of Theorem 5.7. Therefore, every locally finite Borel measure on R"™ is reqular.

A special case of this is the Lebesgue measure in R™ (see Theorem 4.4 and
Exercice 4.6.5).

2. If Y is an open or a closed subset of R™ with the subspace topology, then
Lemma 5.8 together with Theorem 5.7 imply that every locally finite Borel
measure on Y is regular.

As a special case, if Y = (ag,bp) is a generalized interval in R, then every
locally finite Borel measure on Y is regular. Since Theorem 5.6 says that any
such measure is a Lebesgue-Stieltjes measure, this result is, also, easily implied
by Theorem 5.4.

5.3 Metric outer measures.

Let (X, d) be a metric space. We recall that, if E, F' are non-empty subsets of
X, the quantity
d(E, F) =inf{d(z,y) |z € E,y € F}

is the distance between E and F'.

Definition 5.4 Let (X, d) be a metric space and p* be an outer measure on X .
We say that p* is a metric outer measure if

p(EUF)=p"(E)+p" (F)
for every non-empty E, F C X with d(E,F) > 0.

Theorem 5.8 Let (X,d) be a metric space and p* an outer measure on X.
Then, the measure p which is induced by p* on (X,3,+) is a Borel measure
(i.e. all Borel sets in X are p*-measurable) if and only if p* is a metric outer
measure.

Proof: Suppose that all Borel sets in X are p*-measurable and take arbitrary
non-empty E, F C X with d(E,F) > 0. We consider r = d(F,F) and the
open set U = UgyepB(z;7). It is clear that E C U and F NU = (). Since U is
p*-measurable, we have p*(EUF) = p*((EUF)NU) + p*(EUF)NU®) =
p*(E) + p*(F). Therefore, u* is a metric outer measure on X.

Now let p* be a metric outer measure and consider an open U C X.

If A is a non-empty subset of U, we define

1
A, = {m€A|d(x,y) > — for everyy§éU}.
n
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It is obvious that A,, C A, ;1 for all n. If x € A C U, there is r > 0 so that
B(z;r) CU and, if we take n € N so that % < r, then z € A,,. Therefore,

A, T A.

We define, now, By = A; and B,, = A, \ 4,1 for all n > 2 and have that
the sets Bj, Bs,... are pairwise disjoint and that A = U;tlen. If z € A, and

z € Bpya, then z ¢ A, 11 and there is some y ¢ U so that d(y, z) < n%_l Then

d(z,z) > d(z,y) —d(y,z) > + — # = m Therefore,
d(An, Bpi2) > _ >0
ny On+2) = n(n+ 1)

for every n. Since A,y2 2 Ay U By, we find p*(Apy2) > p*(An U Bpga) =
w*(Ap) + p*(Bnt2). By induction we get

W (B1) + p*(Bsg) + -+ + " (Bant1) < " (A2ng1)

and
1'(By) + 17 (Ba) + -+ 1" (Ban) < 1" (Aan)

for all n. If at least one of the series p*(B1)+p*(Bs)+- - - and p*(Bg)+p* (Ba)+
-+ - diverges to 400, then either p*(Agpn4+1) — +00 or pu*(As,) — +o0. Since the
sequence (u*(A4,)) is increasing, we get that in both cases it diverges to +oo.
Since, also p*(A,) < p*(A) for all n, we get that p*(A,) 1T p*(A). If both series
w*(B1)+p*(Bs)+--- and p*(Bz2) + pu*(Byg) + - - - converge, for every € > 0 there
is n so that ;20 | p*(Bi) < e. Now, p*(A) < p*(An) + S350 w*(By) <
w*(Ay) + €. This implies that pu*(A,) T u*(A). Therefore, in any case,

e (An) T (A).

We consider an arbitrary £ C X and we take A = ENU. Since EUU® C U°¢,
we have that d(A,, ENU¢) > 0 for all n and, hence, u*(E) > p* (A,U(ENU¢)) =
p (Ap) + p*(ENU®) for all n. Taking the limit as n — 400, we find

W(E) = p(ENU) +u* (ENU°).

We conclude that every U open in X is p*-measurable and, hence, every
Borel set in X is p*-measurable.

5.4 Hausdorff measure.

Let (X, d) be a metric space. The diameter of a non-empty set F C X is defined
as diam(FE) = sup{d(z,y)|z,y € E} and the diameter of the () is defined as
diam(f) = 0.

We take an arbitrary § > 0 and consider the collection Cs of all subsets of
X of diameter not larger than §. We, then, fix some a with 0 < @ < 400 and
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consider the function 745 : C5 — [0, +00| defined by 7, s(F) = (diam(E))a for
every E € C5. We are, now, ready to apply Theorem 3.2 and define

“+o0
* 5(B) = inf { Y (diam(E;))* | E € UF%E; , diam(E;) < 6 for all j}.

j=1
We have that h; s is an outer measure on X and we further define

h.(E) =suph;, s(E), ECX.
6>0

We observe that, if 0 < §; < d9, then the set whose infimum is h;& (E) is
included in the set whose infimum is &}, 5, (E). Therefore, h}, ;5 (E) < k7, 5 (E)
and, hence,

hi(E) = lim h} s(E ECX.
a( ) 5*1>I[I)l+ a,5( )? =
Theorem 5.9 Let (X, d) be a metric space and 0 < a < +o0o. Then, h is a
metric outer measure on X.

Proof: We have h,(0) = sups- hy, 5(0) = 0, since A, ; is an outer measure for
every 0 > 0.

If £ CF C X, then for every § > 0 we have h, s(E) < hy, 5(F) < hi(F).
Taking the supremum of the left side, we find A} (E) < b (F).

If E = U/YE;, then for every § > 0 we have b, 5(E) < Y177 h?, 5(E))
;;OT hY(E;) and, taking the supremum of the left side, we find A} (FE)
T hi(E)).

Therefore, h}, is an outer measure on X.

Now, take any F,F C X with d(E,F) > 0. If b’ (F U F) = +o0, then the
equality b’ (FUF) = hX(FE) + h%(F) is clearly true. We suppose that b (E U
F) < +oo and, hence, h}, 5(E'U F) < +oo for every > 0. We take arbitrary
0 < d(E,F) and an arbitrary covering £ U F C U;':OTAj with diam(A4;) < ¢
for every j. It is obvious that each A; intersects at most one of the £ and F'.
We set Bj = A; when A;j intersects E and B; = () otherwise and, similarly,
C; = Aj when A; intersects F' and C; = () otherwise. Then, E C szofBj
and F C UJ2C; and, hence, b 5(E) < Y17 (diam(B;))* and b7, ;(F) <

125 (diam(C;))®. Adding, we find hf 5(E) + hi 4(F) < >/ (diam(4;))*
and, taking the infimum of the right side, b}, 5(E) + k7, ;(F) < R}, ;(E'U F).
Taking the limit as § — 0+ we find b} (E) 4+ b} (F) < b} (EUF) and, since the
opposite inequality is obvious, we conclude that

IAIA

hi(E)+ hi(F)=h:(EUF).
Definition 5.5 Let (X,d) be a metric space and 0 < o < +o00. We call h};,

the a-dimensional Hausdorff outer measure on X and the measure hg
on (X, ¥p) is called the a-dimensional Hausdorff measure on X.
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Theorem 5.10 If (X,d) is a metric space and 0 < a < 400, then hy is a
Borel measure on X. Namely, Bx C Xp: .

Proof: Immediate, by Theorems 5.8 and 5.9.

Proposition 5.3 Let (X,d) be a metric space, E a Borel set in X and let
0< a1 <ag <+4o00. If ho, (E) < 400, then hq,(E) = 0.

Proof: Since hy,, (E) = ha, (E) < +oo, we have that hy, ;(E) < +oo for every
0 > 0. We fix such a § > 0 and consider a covering £ C Uj':of A; by subsets of
X with diam(A4;) < § for all j so that Y%7 (diam(4;))™" < h%, 5(E) +1 <
h: (E) + 1.
Therefore, b7, 5(E) < 3727 (diam(4;))** < 6271 Y% (diam(A4;)) ™" <
(hy, (E) 4 1)0%2~1 and, taking the limit as 6 — 0+, we find A}, (E) = 0.
Hence, hq,(F) = 0.

Proposition 5.4 If E is any Borel set in a metric space (X,d), there is an
ag € [0,400] with the property that ho(E) = +oo for every a € (0,a9) and
ha(E) =0 for every a € (g, +00).

Proof: We consider various cases.

1. ho(E) =0 for every a > 0. In this case we set ag = 0.

2. ho(E) = +oo for every a > 0. We, now, set oy = +00.

3. There are o1 and ag in (0,400) so that 0 < he, (F) and hq,(E) < 400.
Proposition 5.3 implies that a; < s and that ho(E) = +oo for every

a € (0,a1) and ho(E) = 0 for every o € (g, +00). We consider the set

{a € (0,400) | ho(E) = 400} and its supremum «g € [ag,az]. The same

Proposition 5.3 implies that hq(E) = +oo for every a € (0,ap) and ho(E) =0

for every a € (ag, +00).

Definition 5.6 If E is any Borel set in a metric space (X, d), the ag of Propo-
sition 5.4 is called the Hausdorff dimension of E and it is denoted

5.5 Exercises.

1. If—o<xi<a<---<zy <+ooand 0 < Aq,..., Ay < +0o0, then find
(and draw) the cumulative distribution function of u = Zszl AiOz, -

2. The Cantor measure.

Consider the Cantor function f (exercise 4.6.10) extended to R by f(z) =
0 for all z < 0 and f(z) = 1 for all x > 1. Then f : R — [0,1] is
increasing, continuous and bounded.

(i) f is the cumulative distribution function of ;.

(ii) Prove that ps(C) = ps(R) = 1.

(iii) Each one of the 2™ subintervals of I, (look at the construction of C)
has measure equal to 2%
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3.

4.

5.

6.

10.

Let 1 be a locally finite Borel measure on R such that p((—o0,0]) < +o0.
Prove that there is a unique f : R — R increasing and continuous from
the right so that u = py and f(—oo0) = 0. Which is this function?

Linear combinations of reqular Borel measures.

If w,p1, e are regular Borel measures on the topological space X and
A € [0, +00), prove that A and pg + po (exercise 2.6.2) are regular Borel
measures on X.

Prove that every locally finite Borel measure on R™ is o-finite.

The support of a reqular Borel measure.

Let p be a regular Borel measure on the topological space X. A point
x € X is called a support point for u if u(U,) > 0 for every open
neighborhood U, of x. The set

supp(p) = {z € X |z is a support point for u}

is called the support of pu.

(i) Prove that supp(u) is a closed set in X.

(ii) Prove that u(K) = 0 for all compact sets K C (supp(p))©.

(iii) Using the regularity of u, prove that p((supp(p))c) =0.

(iv) Prove that (supp(u))€ is the largest open set in X which is p-null.

If f is the Cantor function (exercise 5.5.2), prove that the support (exercise
5.5.6) of py is the Cantor set C.

Supports of Lebesque-Stieltjes measures.

Let F : R — R be any increasing function. Prove that the complement
of the support (exercise 5.5.6) of the measure pp is the union of all open
intervals on each of which F' is constant.

. Let a : R — [0, +00] induce the point-mass distribution ¢ on (R, P(R)).

Then p is a Borel measure on R.

(i) Prove that p is locally finite if and only if >°_ 5. - a. < +oo for all
R >0.

(ii) In particular, prove that, if u is locally finite, then A = {z € R|a, >
0} is countable.

(iii) In case u is locally finite, find an increasing, continuous from the
right FF : R — R (in terms of the function a) so that p = pup on Bgr.
Describe the sets E such that pi.(E) = 0 and find the o-algebra Y5 of all
wi-measurable sets. Is ¥p = P(R)?

Restrictions of reqular Borel measures.

Let p be a o-finite regular Borel measure on the topological space X and
Y be a Borel subset of X. Prove that the restriction py is a regular Borel
measure on X.
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11.

12.

Continuous reqular Borel measures.

Let p be a regular Borel measure on the topological space X so that
w({z}) =0 for all x € X. A measure satisfying this last property is called
continuous. Prove that for every Borel set A in X with 0 < p(4) < 400
and every t € (0, u(A)) there is some Borel set B in X so that B C A and

w(B) =t.

Let X be a separable, complete metric space and p be a Borel measure
on X so that u(X) = 1. Prove that there is some B, a countable union of
compact subsets of X, so that u(B) = 1.
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Chapter 6

Measurable functions

6.1 Measurability.

Definition 6.1 Let (X,X) and (Y,X') be measurable spaces and f: X — Y.
We say that f is (X,Y)-measurable if f~1(E) € ¥ for all E € ¥'.

Example

A constant function is measurable. In fact, let (X, %) and (Y, X’) be mea-
surable spaces and f(z) = yo € Y for all x € X. Take arbitrary E € X'. If
yo € E, then f~Y(E)= X € %. If yo ¢ E, then [~ (E) =0 € 3.

Proposition 6.1 Let (X,X) and (Y,Y') measurable spaces and f : X — Y.
Suppose that € is a collection of subsets of Y so that L(E) =Y. If f~1(E) e X
for all E € &, then f is (X,%')-measurable.

Proof: We consider the collection S = {E CY | f~1(E) € ©}.

Since f~1(0) = 0 € %, it is clear that () € S.

If E €S8, then f71(E°) = (f~1(E))° € ¥ and thus E° € S.

If E1,F5,... € S, then f_l(U;r:Oij) = U;r:‘xf ~1(E;) € %, implying that
Uj:o?Ej €S.

Therefore S is a g-algebra of subsets of Y. &£ is, by hypothesis, included in
S and, thus, X' = 3(€) € S. This concludes the proof.

Proposition 6.2 Let X,Y be topological spaces and f : X — Y be continuous
on X. Then f is (Bx,By)-measurable.

Proof: Let £ be the collection of all open subsets of Y. Then, by continuity,
f~Y(B) is an open and, hence, Borel subset of X for all E € £. Since ¥(€) = By,
Proposition 6.1 implies that f is (Bx, By )-measurable.

6.2 Restriction and gluing.

If f: X - Y and A C X is non-empty, then the function f]A: A — Y, defined
by (f1A)(z) = f(x) for all € A, is the usual restriction of f on A.
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Recall that, if ¥ is a g-algebra of subsets of X and A € ¥ is non-empty,
then, by Lemma 2.1, ¥]A = {E C A|E € X} is a o-algebra of subsets of A.
We call ¥] A the restriction of ¥ on A.

Proposition 6.3 Let (X,Y), (Y,X') be measurable spaces and f : X — Y. Let
the non-empty A1, ..., A, € X be pairwise disjoint and Ay U---U A, = X.

Then f is (3,%")-measurable if and only if f]A; is (X]A;,¥)-measurable
forallj=1,... n.

Proof: Let f be (X,%')-measurable. For all E € ¥’ we have (f]A;)"Y(E) =
FHE)NA; € ] A; because the set f~1(E)N A; belongs to ¥ and is included
in A;. Hence f]A; is (¥]A4;,X’)-measurable for all j.

Now, let f]A4; be (X]A;,¥’)-measurable for all j. For every E € ¥’ we have
that f~H(E) N A; = (f14;)"1(E) € £]A; and, hence, f~}(E) N A; € X for all
j. Therefore f~Y(E) = (f"YE)NA)U---U(fYE)NA,) € 3, implying that
f is (%, X')-measurable.

In a free language: measurability of a function separately on complementary
(measurable) pieces of the space is equivalent to measurability on the whole space.

There are two operations on measurable functions that are taken care of
by Proposition 6.3. One is the restriction of a function f : X — Y on some
non-empty A C X and the other is the gluing of functions f]A4; : 4; — Y
to form a single f : X — Y, whenever the finitely many A;’s are non-empty,
pairwise disjoint and cover X. The rules are: restriction of measurable functions
on measurable sets are measurable and gluing of measurable functions defined
on measurable subsets results to a measurable function.

6.3 Functions with arithmetical values.

Definition 6.2 Let (X,Y) be measurable space and f : X — R or R or C or
C. We say f is ©-measurable if it is (X, Br or By or Bc or Bg)-measurable,
respectively.

In the particular case when (X,X) is (R™, Brn) or (R™, L), then we use

the term Borel measurable or, respectively, Lebesgue measurable for f.

If f: X — R, then it is also true that f : X — R. Thus, according to the
definition we have given, there might be a conflict between the two meanings
of ¥-measurability of f. But, actually, there is no such conflict. Suppose, for
example, that f is assumed (3, Br)-measurable. If E € B, then ENR € Br
and, thus, f~'(E) = f~'(ENR) € . Hence f is (¥, Bg)-measurable. Let,
conversely, f be (X, Bg)-measurable. If £ € Bgr, then £ € By and, thus,
f7Y(E) € . Hence f is (X, Br)-measurable.

The same question arises when f : X — C, because it is then also true that
f: X — C. Exactly as before, we may prove that f is (X, Bc)-measurable if
and only if it is (3, Bg)-measurable and there is no conflict in the definition.
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Proposition 6.4 Let (X,X) be measurable space and f : X — R™. Let, for
eachj=1,...,n, f; : X — R denote the j-th component function of f. Namely,
f(.’E) = (fl(x)a .- ,fn(l')) fO’f' allx € X.

Then f is (X, Brn)-measurable if and only if every f; is X-measurable.
Proof: Let f be (3, Brr)-measurable. For all intervals (a,b] we have
fi (a,0) = fTH R x - x Rx (a,b) x Rx -+ x R)

which belongs to ¥. Since the collection of all (a,b] generates Br, Proposition
6.1 implies that f; is X-measurable.
Now let every f; be X-measurable. Then

FH(an,ba] x - < (an, ba)) = fi ' ((ar, ba]) 00 f7 (an, bal)

which is an element of X. The collection of all open-closed intervals generates
Bgrr and Proposition 6.1, again, implies that f is (X, Bgr)- measurable.

In a free language: measurability of a vector function is equivalent to mea-
surability of all component functions.

The next two results give simple criteria for measurability of real or complex
valued functions.

Proposition 6.5 Let (X,X) be measurable space and f : X — R. Then f is
Y-measurable if and only if f~1((a,+00)) € X for all a € R.

Proof: Since (a,+00) € Bgr, one direction is trivial.

If f~1((a,+00)) € ¥ for all a € R, then f~1((a,b]) = f~1((a,+)) \
FYH((b, +00)) € T for all (a, b]. Now the collection of all intervals (a, b] generates
Br and Proposition 6.1 implies that f is Y-measurable.

Of course, in the statement of Proposition 6.5 one may replace the intervals
(a,4+00) by the intervals [a, +00) or (—o00,b) or (—oo, b].

If f: X — C, then the functions R(f),S(f) : X — R are defined by
R(f)(z) = R(f(z)) and I(f)(z) = S(f(x)) for all z € X and they are called
the real part and the imaginary part of f, respectively.

Proposition 6.6 Let (X,X) be measurable space and f : X — C. Then f is
Y-measurable if and only if both R(f) and I(f) are X-measurable.

Proof: An immediate application of Proposition 6.4.

The next two results investigate extended-real or extended-complex valued
functions.

Proposition 6.7 Let (X,Y) be measurable space and f : X — R. The follow-
ing are equivalent.

(i) f is X-measurable.

(i) f71({+00}), fH(R) € ¥ and, if A = f~Y(R) is non-empty, the function
f1A: A — R is X A-measurable.

(iii) f~((a,+o0]) € ¥ for all a € R.
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Proof: Tt is trivial that (i) implies (iii), since (a, +o00] € By for all a € R.

Assume (ii) and consider B = f~1({+o0}) € ¥ and C = f~}({-o0}) =
(AU B)° € . The restrictions f]|B = 400 and f|C = —oco are constants and
hence are, respectively, ¥|B-measurable and ¥]C-measurable. Proposition 6.3
implies that f is ¥-measurable and thus (ii) implies (i).

Now assume (iii). Then f='({+o0}) = N}:>f~1((n,+oo]) € ¥ and then
f~H(a,40)) = f~H(a,+]) \ f71({+0o0}) € X for all a € R. Moreover,
FHR) = U f~H((—n,+00)) € 3. For all a € R we get (f]A)"1((a, +00)) =
71 ((a,+00)) € £]A, because the last set belongs to ¥ and is included in A.
Proposition 6.5 implies that f]A is ¥]A-measurable and (ii) is now proved.

Proposition 6.8 Let (X, ) be measurable space and f : X — C. The follow-
ing are equivalent.

(i) f is X-measurable.

(ii) f~1(C) € ¥ and, if A = f~Y(C) is non-empty, the f]A : A — C is
Y A-measurable.

Proof: Assume (ii) and consider B = f~1({o0}) = (f~1(C))¢ € X. The restric-
tion f]B is constant oo and hence X|B-measurable. Proposition 6.3 implies
that f is ¥-measurable. Thus (ii) implies (i).

Now assume (i). Then A = f~!(C) € ¥ since C € Bg. Proposition 6.3
implies that f]A is ¥] A-measurable and (i) implies (ii).

6.4 Composition.

Proposition 6.9 Let (X,Y), (Y,X'), (Z,X") be measurable spaces and let f :
X =Y, 9:Y > Z If f is (X,%)-measurable and g is (X', X")-measurable,
then go f : X — Z is (X, X")-measurable.

Proof: For all E € X" we have (go f)"'(E) = f~'(¢7*(F)) € %, because
g HE)eX.

Hence: composition of measurable functions is measurable.

6.5 Sums and products.

The next result is: sums and products of real or complex valued measurable
functions are measurable functions.

Proposition 6.10 Let (X,X) be a measurable space and f,g: X — R or C be
Y-measurable. Then f + g, fg are X-measurable.

Proof: (a) We consider H : X — R? by the formula H(z) = (f(z), g(z)) for all
x € X. Proposition 6.4 implies that H is (3, Brz)-measurable. Now consider
¢,7 : R? — R by the formulas ¢(y, 2) = y+2 and ¥(y, 2) = yz. These functions
are continuous and Proposition 6.2 implies that they are (Brz, Br)-measurable.
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Therefore the compositions ¢ o H,9 o H : X — R are Y-measurable. But
(60 H)(x) = f(2)+ g(x) = (f +g)(x) and (o H)(z) = f(a)g(x) = (fg)(x) for
all x € X and we conclude that f+¢g = ¢o H and fg = 1o H are X-measurable.
(b) In the case f, g : X — C we consider R(f), 3(f), R(g9), S(9) : X — R, which,
by Proposition 6.6, are all ¥-measurable. Then, part (a) implies that ®(f+g) =
R(f) + R(9),3(f + 9) = S(f) + 3(g), R(f9) = R(NR(9) — S()S(9), 3(fg) =
R(F)S(g) + S(f)R(g) are all E-measurable. Proposition 6.6 again, gives that
f + g, fg are X-measurable.

If we want to extend the previous results to functions with infinite values,
we must be more careful.

The sums (+00) + (—0o0), (—o0) + (+00) are not defined in R and neither is
00 + 0o defined in C. Hence, when we add f,g : X — R or C, we must agree
on how to treat the summation on, respectively, the set B = {z € X | f(z) =
+00,9(x) = —oc0 or f(x) = —o0,g(x) = +oo} or the set B = {x € X | f(x) =
00,g(x) = co}. There are two standard ways to do this. One is to ignore the
bad set and consider f 4+ g defined on B¢ C X, on which it is naturally defined.
The other way is to choose some appropriate h defined on B and define f+g = h

on B. The usual choice for h is some constant, e.g h = 0.

Proposition 6.11 Let (X,Y) be a measurable space and f,g: X — R be -
measurable. Then the set

B ={r e X|f(z)=+00,9(x) = —o0 or f(z) = —00, g(x) = +o0}

belongs to X. o
(i) The function f + g : B¢ — R is ¥| B°-measurable.
(i1) If h : B — R is X| B-measurable and we define
_{f@)+g(), ifxe B,
(F+9)@) = {h(;z:), if v € B,

then f +¢g: X — R is S-measurable.
Similar results hold if f,g: X — C and B = {x € X | f(z) = 00, g(x) = oc}.

Proof: We have

B = (f""({+oo}) Ng™ ({—00})) U (f T ({-00}) Ng~ ({+00})) € X.

(i) Consider the sets A = {x € X | f(z),9(z) € R}, C1 = {z € X|f(x) =
o0, (x) # —o0 o1 f(z) # —o0,g(x) = +oo} and Cp = {z € X|f(z) =
—00,9(x) # oo or f(z) # +o0,g(x) = —oo}. It is clear that A,C1,Cs € X,
that B¢ = AU (C7 U5 and that the three sets are pairwise disjoint.

The restriction of f + g on A is the sum of the real valued f]A,g]A. By
Proposition 6.3, both f]A, g]A are X]A-measurable and, by Proposition 6.10,
(f+9)]A = flA+g]Ais ©] A-measurable. The restriction (f+g)]C} is constant
+00, and is thus X|C;-measurable. Also the restriction (f + ¢g)]Cy = —o0 is
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¥ ]Co-measurable. Proposition 6.3 implies that f + g : B¢ — R is X]|B¢
measurable.
(ii) This is immediate after the result of (i) and Proposition 6.3.

The case f,g: X — C is similar, if not simpler.

For multiplication we make the following
Convention: (+00)-0=0-(+00) =0 R andc-0=0-00 =0 in C.

Thus, multiplication is always defined and we may state that: the product
of measurable functions is measurable.

Proposition 6.12 Let (X,Y) be a measurable space and f,g: X — R or C be
Y-measurable. Then the function fg is X-measurable.

Proof: Let f,g: X — R.

Consider the sets A = {z € X | f(x),9(z) € R}, C; = {a € X | f(z)
+00,g9(x) > 0or f(z) = —o0,g9(x) < Oor f(z) > 0,9(z) = +oo or f(z)
0,9(x) = —oo}, Cp = {z € X|[f(z) = —00,9(x) > 0or f(z) = +o0,g(x)
0or f(x) > 0,g9(z) = —occ or f(z) < 0,9(z) = +oo} and D = {z € X | f(x)
+00,g9(z) =0 or f(x) = 0,g(x) = oo}. These four sets are pairwise disjoint,
their union is X and they all belong to X.

The restriction of fg on A is equal to the product of the real valued f1A4, g]A,
which, by Propositions 6.3 and 6.10, is ¥] A-measurable. The restriction (fg)]C
is constant +oco and, hence, ¥]Cj-measurable. Similarly, (fg)]Cy = —oo is
Y |Cy-measurable. Finally, (fg)|D = 0 is ¥] D-measurable.

Proposition 6.3 implies now that fg is ¥-measurable.

If f,g: X — C, the proof is similar and slightly simpler.

A A

6.6 Absolute value and signum.

The action of the absolute value on infinities is: | + oo| = | — 00| = 400 and
|oo| = +o0.

Proposition 6.13 Let (X,X) be a measurable space and f : X — R or C be
Y -measurable. Then the function |f|: X — [0,+00] is X-measurable.

Proof: Let f : X — R. The function | -| : R — [0,+00] is continuous and,
hence, (Bg, Bg)-measurable. Therefore, |f|, the composition of | - | and f, is
Y-measurable.

The same proof applies in the case f: X — C.

Definition 6.3 For cvery z € C we define

A
sign(z) = ¢ 0, if z=0,
o0, if z=o00.
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If we denote C* = C \ {0,00}, then the restriction sign]C* : C* — C is
continuous. This implies that, for every Borel set E in C, the set (sign]C*)~1(E)
is a Borel set contained in C*. The restriction sign]{0} is constant 0 and the
restriction sign]{oo} is constant co. Therefore, for every Borel set F in C, the
sets (sign]{0})~(E), (sign]{oo}) "' (E) are Borel sets. Altogether, sign™(E) =
(sign]C*)~1(E) U (sign]{0}) 1 (E) U (sign]{co}) ! (E) is a Borel set in C. This

means that sign : C — C is (Bg, Bg)-measurable.
All this applies in the same way to the function sign : R — R with the
simple formula
1, if 0 <z < +o0,
sign(x) = { -1, if —co <z <0,
0, if x =0.
Hence sign : R — R is (Bg, Bg)-measurable.
For all z € C we may write

z = sign(z) - |z|
and this is called the polar decomposition of z.

Proposition 6.14 Let (X,X) be a measurable space and f : X — R or C be
Y-measurable. Then the function sign(f) is X-measurable.

Proof: If f : X — R, then sign(f) is the composition of sign : R — Ejnd f
and the result is clear by Proposition 6.9. The same applies if f: X — C.

6.7 Maximum and minimum.

Proposition 6.15 Let (X,X) be measurable space and f1,...,fn: X — R be
Y-measurable. Then the functions max{fi,..., fn},min{f1,....fn} : X = R
are Y-measurable.

Proof: If h = max{fi,..., f,}, then for all @ € R we have h=!((a,+00]) =
Ug-bzlf;l((a,—i—oo]) € Y. Proposition 6.7 implies that h is X-measurable and

from min{fi,..., fn} = —max{—f1,...,—fn} we see that min{fy,..., f} is
also ¥-measurable.

The next result is about comparison of measurable functions.

Proposition 6.16 Let (X,X) be a measurable space and f,g: X — R be -
measurable. Then {x € X | f(z) = g(z)},{z € X | f(z) < g(x)} € X.
If f,g: X — C is E-measurable, then {x € X | f(z) = g(x)} € Z.

Proof: Consider the set A = {z € X | f(z),g(z) € R} € ¥. Then the functions
f14,g]A are ¥]A-measurable and thus f]A — g]A is ¥]A-measurable. Hence
the sets {z € A| f(z) = g(z)} = (F1A — g4)'({0}) and {z € A| f(z) <
g(x)} = (f1A - g]A)~1((—00,0)) belong to X]A. This, of course, means that
these sets belong to ¥ (and that they are subsets of A).
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We can obviously write {z € X | f(z) = g(z)} = { € A]| f(z) = g(z)}U
(fTr{—och) Ng7 ({—00})) U (f1({+oc}) Ny 1({—i—oo})) € ¥. In a similar
manner, {z € X|f(z) < g(2)} = {z € A|f(z) < g(a)} U (f~'({-00}) N

97 (=00, +00])) U (fH([—00,+00)) g~} ({+00})) € T.
The case of f,g: X — C and of {x € X | f(z) = g(z)} is even simpler.

6.8 Truncation.

There are many possible truncations of a function.
Definition 6.4 Let f: X — R and consider o, 3 € R with o < 3. We define
f(x), ifa< f(z)<p,

D@ =1 a, i fz)<a,

B, if B<f(z).
We write fP) instead of f( 20) and f(o) instead of f((:)m).
The functions f(a), ),f(a) are called truncations of f.

Proposition 6.17 Let (X,X) be a measurable space and f : X — R be a
Y -measurable function. Then all truncations f((f)) are Y -measurable.

Proof: The proof is obvious after the formula f B — min { max{f,a}, ﬂ}.

An important role is played by the following special truncations.

Definition 6.5 Let f: X — R. The f*: X — [0, +00] and f~ : X — [0, +o0]
defined by the formulas

@), if0<f@), . [0, o< (o),
f+@’{o, if f <o, 1 “>{—f@» if f(z) <0

are called, respectively, the positive part and the negative part of f.

It is clear that f+ = foy and f7 = —f© Hence if ¥ is a o-algebra of subsets
of X and f is Y-measurable, then both f* and f~ are Y-measurable. It is also
trivial to see that at every z € X either f*(z) =0 or f~(x) =0 and that

ffrf=If ==

There is another type of truncations used mainly for extended-complex val-
ued functions.

Definition 6.6 Let f : X — R or C and consider r € [0, +oc]. We define

@ iy =  F @), if |f@)]<r,
/(@) {rw@ﬂﬂ@% if 7<)

The functions ) f are called truncations of f.
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Observe that, if f: X — R, then (") f = f((i)r)

Proposition 6.18 Let (X,Y) be a measurable space and f : X — R or C a
Y-measurable function. Then all truncations ") f are ¥.-measurable.

Proof: Observe that the function ¢, : R — R with formula

b0() = {x if ja| <,

r-sign(x), if r <z,

is continuous on R and hence (Bg, Bg)-measurable. Now "f = ¢, 0 f is
Y-measurable.
The proof in the case f : X — C is similar.

6.9 Limits.

The next group of results is about various limiting operations on measurable
functions. The rule is, roughly: the supremum, the infimum and the limit of a
sequence of measurable functions are measurable functions.

Proposition 6.19 Let (X,X) be a measurable space and (f;) a sequence of -
measurable functions f; : X — R. Then all the functions sup;cy fj, infjen fj,
limsup,_, ;o fj and liminf; 1 f; are X-measurable.

Proof: Let h = sup;cn fj : X — R. For every a € R we have h™!((a, +o0]) =
Uj:“ff;l((a, +o0]) € X. Proposition 6.7 implies that h is X-measurable.

Now infjen fj = —sup;en(—f;) is also X-measurable.

And, finally, limsup;_,, . f; = infjen (Supkzj fk) and liminf; 4 f; =
SUp,eN (inszj fk) are Y-measurable.

Proposition 6.20 Let (X,X) be a measurable space and (f;) a sequence of
Y-measurable functions f; : X — R. Then the set

A={zre X| _lir+n fi(z) exists in R}
j—4o0

belongs to 2. o
(i) The function lim; ., o f; : A — R is ¥ A-measurable.
(ii) If h : A — R is ¥] A°-measurable and we define

(lm f;)(x) =

oo

lim; 4o fj(z), ifz €A,
h(x)’ if v € AC,

then lim;_ 4o fj : X — R is X-measurable.
Similar results hold if f; + X — C for all j and we consider the set A =
{z € X|limj_. ;o fj(x) exists in C}.
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Proof: (a) Suppose that f; : X — R for all j.

Proposition 6.19 implies that limsup;_, . f; and liminf; 4 f; are both
¥-measurable. Since lim;_ o fj(z) exists if and only if limsup;_, ., fj(z) =
liminf; 4 f;(x), we have that

A ={z € X | limsup f;(z) = liminf f;(x)}
j——+oo Jj—+o0

and Proposition 6.16 implies that A € 3.

(i) It is clear that the function lim;_, 4o f; : A — R is just the restriction of
limsup;_,, ., f; (or of liminf; .. f;) to A and hence it is ¥]A-measurable.
(ii) The proof of (ii) is a direct consequence of (i) and Proposition 6.3.

(b) Let now f; : X — C for all j.

Consider the set B = {z € X | lim;_,; f;(z) exists in C} and the set C'=
{z € X | lim;_,; fj(z) = c0}. Clearly, BUC = A.

Now, C = {z € X | lim; 4 |fj|(x) = +o0}. Since |f;| : X — R for all
J, part (a) implies that the function lim;_, 1 |f;| is measurable on the set on
which it exists. Therefore, C' € X.

B is the intersection of By = {z € X | lim; ;o R(f;)(2) exists in R} and
By = {z € X|limj_ 4o S(f;)(2) exists in R}. By part (a) applied to the
sequences (R(f;)), (3(f;)) of real valued functions, we see that the two functions
limj 4 oo R(f;), lim;— 4 oo I(f;) are both measurable on the set on which each of
them exists. Hence, both By, Bs (the inverse images of R under these functions)
belong to ¥ and thus B = B; N By € X.

Therefore A= BUC € X.

We have just seen that the functions lim;_ o R(f;),lim;_ 4o S(f;) are
measurable on the set where each of them exists and hence their restrictions to
B are both ] B-measurable. These functions are, respectively, the real and the
imaginary part of the restriction to B of lim;_.,, f; and Proposition 6.6 says
that lim;_, ;. f; is 3] B-measurable. Finally, the restriction to C of this limit
is constant co and thus it is ¥]C-measurable. By Proposition 6.3, lim;_, 4 f;
is X] A-measurable.

This is the proof of (i) in the case of complex valued functions and the proof
of (ii) is immediate after Proposition 6.3.

(c) Finally, let f; : X — C for all j.

For each j we consider the function

() = fj(x)’ if fJ(x) 7&007
9i(x) = {j, if f;(z) = oo.

If we set A; = fj_l(C) € %, then g;]A4,; = f;]4; is ¥]A;-measurable. Also
g;j1A§ is constant j and hence ¥]Af-measurable. Therefore g; : X — C is
3-measurable.

It is easy to show that the two limits lim; 1. g;(z) and lim;_, 4 f;(2)
either both exist or both do not exist and, if they do exist, they are equal. In
fact, let lim;_ o fj(z) =p € C. If p € C, then for large enough j we shall have
that f;(z) # oo, implying g;(z) = f;(z) and thus lim; .1« g;(z) = p. If p = o0,

82



lim; 4 o gj(x) = 0o = p in this case also. The converse is similarly proved. If
lim; .1 gj(z) = p € C, then, for large enough j, g;(z) # j and thus f;(z) =
g;(z) implying lim;_,4 o fj(z) = limj 100 gj(z) = p. If lim;_,1 o gj(x) = o0,
then lim;_, 4 |g;(z)| = +o0. Since |f;(z)] > |g;(z)] we get im;_. 1o | fj(z)] =
+o00 and thus lim;_, 1« fj(z) = oco.

Therefore A = {z € X | lim;_, | g;(z) exists in C} and, applying the result
of (b) to the functions g; : X — C, we get that A € ¥. For the same reason, the
function lim;_, 4 f;, which on A is equal to lim;_.t g;, is £]A-measurable.

then |fj(x)] — +4o0. Therefore |g;(z)] > min{|f;(z)|,j} — +oo and hence

6.10 Simple functions.
Definition 6.7 Let E C X. The function xg : X — R defined by

1, fxek,
XE(”‘{(L ifr¢E,

1s called the characteristic function of E.

Observe that, not only E determines its xg, but also xg determines the set E

by E = {z € X|xg(z) =1} = x5' ({1}).
The following are trivial:

AXE+EXF = AXp\F+(A+K)XEnF+EX P\ E XEXF = XENF Xge = 1—XE
forall E,F C X and all \,k € C.

Proposition 6.21 Let (X,X) be a measurable space and E C X. Then xg is
Y-measurable if and only if £ € 3.

Proof: 1f g is Y-measurable, then E = y5'({1}) € X.

Conversely, let £ € X. Then for an arbitrary F € Bgr or Bc we have
X (F)=0if0,1¢ F, xz'(F)=FEiflc Fand0¢ F, x;'(F)=E°if 1 ¢ F
and 0 € F and x5 (F) = X if 0,1 € F. In any case, x5 (F) € ¥ and g is
Y-measurable.

Definition 6.8 A function defined on a non-empty set X is called a simple
function on X if its range is a finite subset of C.

The following proposition completely describes the structure of simple func-
tions.

Proposition 6.22 (i) A function ¢ : X — C is a simple function on X if
and only if it is a linear combination with complex coefficients of characteristic
functions of subsets of X.

(i1) For every simple function ¢ on X there are m € N, different k1, ..., ky € C
and non-empty pairwise disjoint Ey, ..., Ey, C X with UjL Ej = X so that

O =KiXE, T+ EmXE,, -
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This representation of ¢ is unique (apart from rearrangement).
(i1i) If ¥ is a o-algebra of subsets of X, then ¢ is X-measurable if and only if
all Ey’s in the representation of ¢ described in (ii) belong to X.

Proof: Let ¢ = > 7_; A\jXxF,;, where \; € C and F; C X for all j = 1,...,n.
Taking an arbitrary « € X, either = belongs to no Fj, in which case ¢(z) = 0,
or, by considering all the sets F},,. .., Fj, which contain x, we have that ¢(z) =
Aj; + -+ Aj,.. Therefore the range of ¢ contains at most all the possible sums
Aj, + -+ A, together with 0 and hence it is finite. Thus ¢ is simple on X.

Conversely, suppose ¢ is simple on X and let its range consist of the different
Ki,.-.,km € C. We consider E; = {z € X |¢(z) = k;} = ¢~ *({k;}). Then
every x € X belongs to exactly one of these sets, so that they are pairwise
disjoint and X = F; U---U E,,. Now it is clear that ¢ = Z;nzl KjXE;, because
both sides take the same value at every x.

If ¢ = Z:il KX ; is another representation of ¢ with different k}’s and non-
empty pairwise disjoint E!’s covering X, then the range of ¢ is exactly the set
{k,..., K, }. Hence m' = m and, after rearrangement, K} = K1, ..., kL, = km.
Therefore B = ¢~ ({x}}) = ¢~ ' ({k;}) = E; for all j =1,...,m. We conclude
that the representation is unique.

Now if all E;’s belong to the o-algebra ¥, then, by Proposition 6.21, all
XE,’s are Y-measurable and hence ¢ is also ¥-measurable. Conversely, if ¢ is
Y-measurable, then all E; = ¢~1({x;}) belong to X.

Definition 6.9 The unique representation of the simple function ¢, which is
described in part (ii) of Proposition 6.22, is called the standard representa-
tion of ¢.

If one of the coefficients in the standard representation of a simple function is
equal to 0, then we usually omit the corresponding term from the sum (but then
the union of the pairwise disjoint sets which appear in the representation is not,
necessarily, equal to the whole space).

Proposition 6.23 Any linear combination with complex coefficients of simple
functions is a simple function and any product of simple functions is a simple
function. Also, the mazximum and the minimum of real valued simple functions
are simple functions.

Proof: Let ¢, be simple functions on X and p,q € C. Assume that Ay,..., A\,
are the values of ¢ and k1, ..., Kk, are the values of ¥. It is obvious that the
possible values of pp + g1 are among the nm numbers p\; 4+ ¢x; and that the
possible values of ¢1) are among the nm numbers A;x;. Therefore both functions
pd + q, o1 have a finite number of values. If ¢, are real valued, then the
possible values of max{¢, 1} and min{¢, )} are among the n+m numbers \;, x;.

Theorem 6.1 (i) Given [ : X — [0,+00|, there exists an increasing sequence
(¢n) of non-negative simple functions on X which converges to f pointwise on
X. Moreover, it converges to f uniformly on every subset on which f is bounded.
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(ii) Given f : X — C, there is a sequence (¢,) of simple functions on X which
converges to | pointwise on X and so that (|¢y|) is increasing. Moreover, (¢r,)
converges to f uniformly on every subset on which f is bounded.

If ¥ is a o-algebra of subsets of X and f is X-measurable, then the ¢, in (i)
and (i) can be taken to be Y-measurable.

Proof: (i) For every n,k € N with 1 < k < 22" we define the sets

B0 = (52 ), Be= £ o)

and the simple function

2211,

k—1
Gn = —on Xg» 2"Xr,-
k=1
2n
For each n the sets E,(Ll), R 7(3 ), F,, are pairwise disjoint and their union is

the set f~1((0,+00]), while their complementary set is G = f~1({0}). Observe
that if f is X-measurable then all EP and F,, belong to ¥ and hence ¢, is
3-measurable.

In G we have 0 = ¢, = f, in each ET(Lk) we have ¢,, = kz_nl <f< 2ﬁ = @Hr%
and in F;, we have ¢, = 2" < f.

Now, if f(z) = 400, then z € F, for every n and hence ¢,(z) =
+oo = f(z). If0 < f(z) < —|—oo then for all large n we have 0 < f(x ) < 2"
and hence 0 < f(z) — ¢, (x) < 5+, which implies that ¢, (z) — f(z ) Therefore,
¢, — f pointwise on X.

If K C X and f is bounded on K, then there is an ng so that f(z) < 2™ for
all z € K. Hence for all n > ng we have 0 < f(z) — ¢p(z) < 5 for all z € K.
This says that ¢, — f uniformly on K.

It remains to prove that (¢, ) is increasing. If z € G, then ¢,,(z) = ¢p11(x) =
f(z) = 0. Now observe the relations

EZTVUE) =EP,  1<k<2

and 2(n+1) 1
(Ul2:22"+1+1E’£L<)Fl) UFpt1 = Fn.

The first relation implies that, if z € EY then ¢, (z) = E5L and ¢pyi(z) =

% or 2kt Therefore, if z € ol ), then ¢, (z) < ¢pi1(x).

The second relation implies that, if z € F,, then ¢,(z) = 2" and ¢,11(x) =
2n41 n

% or...or % or 21, Hence, if x € F,,, then ¢, (z) < ¢pi1().

(ii) Let A = f~1(C), whence f = oo on A°. Consider the restriction f]A: A —

C and the functions

(R(FTA))T, (R(f14) 7, (S(F1A) T, (S(f14)) ™ : A — [0, +00).

If f is Y-measurable, then A € ¥ and these four functions are ¥] A-measurable.
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By the result of part (i) there are increasing sequences (py,), (¢n), () and
(sn) of non-negative (real valued) simple functions on A so that each converges
to, respectively, (R(f14))", (R(f14))~, (S(f14))" and (S(f]A))~ pointwise
on A and uniformly on every subset of A on which f]A is bounded (because on
such a subset all four functions are also bounded). Now it is obvious that, if
we set ¢, = (P, — qn) + i(Tn, — Spn), then ¢, is a simple function on A which is
Y] A-measurable if f is X-measurable. It is clear that ¢, — f]A pointwise on
A and uniformly on every subset of A on which f]A is bounded.

Also |pn] = V/(Pn — @n)2 + (rn — 80)%2 = /P2 + 2 + 12 + s2 and thus the
sequence (|¢y,|) is increasing on A.

If we define ¢,, as the constant n on A¢, then the proof is complete.

6.11 The role of null sets.

Definition 6.10 Let (X,X, 1) be a measure space. We say that a property P(x)
holds (p-)almost everywhere on X or for (u-)almost every x € X, if
the set {x € X | P(z) is not true} is included in a (p-)null set.

We also use the short expressions: P(x) holds (u-)a.e. on X and P(x) holds
for (u-)a.e. x € X.

It is obvious that if P(x) holds for a.e. = € X and p is complete then
the set {z € X | P(x) is not true} is contained in ¥ and hence its complement
{zr € X | P(x) is true} is also in X.

Proposition 6.24 Let (X, X, ) be a measure space and (X,%,Ti) be its com-
pletion. Let (Y,¥') be a measurable space and f : X — 'Y be (%, X')-measurable.
If g: X =Y is equal to f a.e on X, then g is (3,%)-measurable.

Proof: There exists N € ¥ so that {z € X | f(z) # g(z)} C N and u(N) =0.
Take an arbitrary E € X' and write g 1(E) = {z € X |g(z) € E} = {z €
N¢|g(x) e E}U{x € N|g(zx) € E} ={x € N°| f(z) € E}U{x € N|g(x) € E}.
The first set is = N°N f~1(E) and belongs to ¥ and the second set is C N.
By the definiton of the completion we get that g~!(E) € ¥ and hence g is
(%, ¥')-measurable.

In the particular case of a complete measure space (X, X, u) we have the
rule: if f is measurable on X and g is equal to f a.e. on X, then g is also
measurable on X.

Proposition 6.25 Let (X, %, 1) be a measure space and (X,¥,71) be its com-
pletion. Let (f;) be a sequence of Y-measurable functions f; : X — R or C. If

g: X — R or C is such that g(z) = limj_ 4 fj(z) for a.e. x € X, then g is
Y-measurable.

Proof: {x € X|limj_ 4 f;j(z) does not exist oris # g(z)} € N for some
N € 3 with pu(N) =0.

86



N¢ belongs to ¥ and the restrictions f;|N¢ are all ¥]N°measurable. By
Proposition 6.20, the restriction g|N¢ = lim;_, o f;|N¢ is ¥]N°measurable.
This, of course, means that for every F € ¥/ we have {x € N¢|g(z) € E} € ¥.

Now we write g1 (E) = {z € N¢|g(z) € E}U{z € N|g(z) € E}. The
first set belongs to ¥ and the second is C N. Therefore g~}(E) € ¥ and g is
Y-measurable.

Again, in the particular case of a complete measure space (X, X, u) the rule
is: if (f;) is a sequence of measurable functions on X and its limit is equal to g
a.e. on X, then g is also measurable on X.

Proposition 6.26 Let (X, Y, 1) be a measure space and (X, %, i) be its comple-
tion. Let (Y,X') be a measurable space and f : A — Y be (2] A, ¥')-measurable,
where A € ¥ with u(A°) = 0. If we extend f to X in an arbitrary manner, then
the extended function is (3, %')-measurable.

Proof: Let h: A° — Y be an arbitrary function and let

| flx), ifzeA,
F(z) = { h(z), ifxe A°.

Take an arbitrary £ € ¥/ and write F~}(E) = {z € A| f(z) € E} U{z €
A¢|h(z) € E} = f~Y(E)U{z € A°|h(z) € E}. The first set belongs to X]A
and hence to X, while the second set is C A°. Therefore F~!(E) € ¥ and F is
(¥, ¥')-measurable.

If (X,X, 1) is a complete measure space, the rule is: if f is defined a.e. on
X and it is measurable on its domain of definition, then any extension of f on
X is measurable.

6.12 Exercises.

1. Let (X,Y) be a measurable space and f : X — R. Prove that f is
measurable if f~1((a, +o0]) € T for all rational a € R.

2. Let f: X - R. If g,h: X — R are such that g,h > 0and f =g —h on
X, prove that f* < gand f~ < hon X.

3. Let (X,Y) be a measurable space and f : X — R or C be measurable.
We agree that 0P = +o00, (+00)? = 0 if p < 0 and 0° = (+0)? = 1. Prove
that, for all p € R, the function |f|? is measurable.

4. Prove that every monotone f : R — R is Borel measurable.

5. Translates and dilates of functions.

Let f: R™ — Y and take arbitrary y € R" and X € (0, +00). We define
g,h:R* =Y by

9@) = fe—y).  ha)=1(5)



10.

11.

12.

for all z € R™. g is called the translate of f by y and h is called the
dilate of f by A.

Let (Y,%’) be a measurable space. Prove that, if f is (£,,, ¥')-measurable,
then the same is true for g and h.

Functions with prescribed level sets.

Let (X, X) be a measurable space and assume that the collection {E)}xer
of subsets of X, which belong to ¥, has the properties:

(i) Ex C Ej, for all A,k with A < &,

(i) UrerEx = X, MerEN =0,

(iil) Nk k> B = Ey for all A € R.

Consider the function f: X — R defined by f(x) = inf{\ € R|z € E\}.
Prove that f is measurable and that E\ = {x € X | f(z) < A} for every
AeR.

How will the result change if we drop any of the assumptions in (ii) and
(iii)?

Not all functions are Lebesgue measurable and not all Lebesgue measurable
functions are Borel measurable.

(i) Prove that a Borel measurable g : R — R is also Lebesgue measurable.
(ii) Find a function f : R — R which is not Lebesgue measurable.

(iii) Using exercise 4.6.15, find a function g : R — R which is Lebesgue
measurable but not Borel measurable.

Give an example of a non-Lebesgue measurable f : R — R so that |f] is
Lebesgue measurable.

Starting with an appropriate non-Lebesgue measurable function, give an
example of an uncountable collection { f; };cr of Lebesgue measurable func-
tions f; : R — R so that sup,¢; f; is non-Lebesgue measurable.

(i) Prove that, if G : R — R is continuous and H : R — R is Borel
measurable, then H o G : R — R is Borel measurable.

(ii) Using exercise 4.6.15, construct a continuous G : R — R and a
Lebesgue measurable H : R — R so that H o G : R — R is not Lebesgue
measurable.

Let (X,Y, ) be a measure space and f : X — R or C be measurable.
Assume that pu({x € X ||f(z)] = +o0}) = 0 and that there is M < 400
so that u({z € X ||f(z)] > M}) < +o0.

Prove that for every e > 0 there is a bounded measurable g : X — R or C
so that u({z € X |g(z) # f(z)}) < e. You may try a suitable truncation
of f.

We say that ¢ : X — C is an elementary function on X if it has count-
ably many values. Is there a standard representation for an elementary
function?
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14.

15.

16.

Prove that for any f: X — [0, +00), there is an increasing sequence (¢y,)
of elementary functions on X so that ¢, — f uniformly on X. If ¥ is a
o-algebra of subsets of X and f is measurable, prove that the ¢,’s can be
taken measurable.

We can add, multiply and take limits of equalities holding almost every-
where.

Let (X, X, 1) be a measure space.

(i) Let f,g,h: X - Y. If f = g a.e. on X and g = h a.e. on X, then
f=hae onX.

(ii) Let f1, f2,91,92 : X = R. If f{ = f5 a.e. on X and g; = g2 a.e. on
X, then fl +91 = fg %;gg and flgl = fggg a.e. on X.

(iii) Let fj,9; : X — R so that f; = g; a.e. on X for all j € N. Then
Supjen fj = Supjen g5 a.e. on X. Similar results hold for inf, lim sup and
lim inf.

(iv) Let fj,g; : X — Rsothat f; = gja.e. on X forallj e N. If A= {z €
X | lim;_ 4o fj(x) exists} and B = {x € X | lim;_, 4 g;(z) exists}, then
AAB C N for some N € ¥ with y(N) =0and lim; 4o f; =lim; 1 g,
a.e. on AN B. If, moreover, we extend both lim;_, f; and lim;_ 4 g;
by a common function h on (AN B)°, then lim; . f; = lim; ., g; a.e.
on X.

Let (X, X, 1) be a measure space and (X, 3, 1) be its completion.

(i) If E € X, then there is A € ¥ so that xg = x4 a.e. on X.

(i) If ¢ : X — C is a Y-measurable simple function, then there is a -
measurable simple function ¢ : X — C so that ¢ = ¢ a.e. on X.

(iii) Use Theorem 6.1 to prove that, if g : X — R or C is Y-measurable,
then there is a Y-measurable f : X — R or C so that g = f a.e. on X.

Let X,Y be topological spaces of which Y is Hausdorff. This means that,
if y1,492 € Y and y; # y2, then there are disjoint open neighborhoods
Viyi» Viyo Of y1,92, respectively. Assume that p is a Borel measure on X
so that u(U) > 0 for every non-empty open U C X. Prove that, if
f,9: X — Y are continuous and f = g a.e. on X, then f =g on X.

The support of a function.

(a) Let X be a topological space and a continuous f : X — C. The set
supp(f) = f~1(C\ {0}) is called the support of f. Prove that supp(f)
is the smallest closed subset of X outside of which f = 0.

(b) Let o be a regular Borel measure on the topological space X and
f : X — C be a Borel measurable function. A point z € X is called
a support point for f if u({y € U, |f(y) # 0}) > 0 for every open
neighborhood U, of x. The set

supp(f) = {z € X |z is a support point for f}

is called the support of f.
(i) Prove that supp(f) is a closed set in X.
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(ii) Prove that p({x € K| f(x) # 0}) = 0 for all compact sets K C
(supp(f))*-

(iii) Using the regularity of p, prove that f = 0 a.e on (supp(f))©.

(iv) Prove that (supp(f))¢ is the largest open set in X on which f = 0
a.e.

c¢) Assume that the p appearing in (b) has the additional property that
w(U) > 0 for every open U C X. Use exercise 6.12.15 to prove that for
any continuous f : X — C the two definitions of supp(f) (the one in (a)
and the one in (b)) coincide.

The Theorem of Lusin.

We shall prove that every Lebesgue measurable function which is finite
a.e. on R" is equal to a continuous function except on a set of arbitrarily
small Lebesgue measure.

(i) For each a < a+6 < b—4 < b we consider the function 7,5 : R - R
which: is 0 outside (a, b), is 1 on [a+d, b—4] and is linear on [a, a+d] and on
[b—4,b] so that it is continuous on R. Now, let R = (a1,b1) X -+ X (an, by,)
and, for small enough § > 0, we consider the function 7z 5 : R™ — R by
the formula

TR,(S(‘Tla o 7xn) = Tal,bl,é(xl) v Tan,,bn,é(xn)~

If Rs = (a1 + 9,b1 — §) x -+ x (an + &,b, — 0), prove that Tps = 1 on
Rs, Tr,s = 0 outside R, 0 < 7ps < 1 on R™ and 7gs is continuous
on R™. Therefore, prove that for every ¢ > 0 there is § > 0 so that
ma({z € R? | 7rs(2) £ xr(2)}) < €.

(ii) Let E € L,, with m,(E) < +oo. Use Theorem 4.6 to prove that for
every € > 0 there is a continuous 7 : R™ — R so that 0 <7 <1 on R"
and m,({z € R"|7(z) # xe(z)}) <e.

(iii) Let ¢ be a non-negative Lebesgue measurable simple function on R
which is 0 outside some set of finite Lebesgue measure. Prove that for all
€ > 0 there is a continuous 7 : R — R so that 0 < 7 < maxg» ¢ on R”
and m,({r € R"|7(z) # ¢(x)}) < e

(iv) Let f : R™ — [0,1] be a Lebesgue measurable function which is 0
outside some set of finite Lebesgue measure. Use Theorem 6.1 to prove
that f = E;j g uniformly on R™, where all ¢, are Lebesgue measur-
able simple functions with 0 < ¢, < 2% on R™ for all k. Now apply the
result of (iii) to each ), and prove that for all € > 0 there is a continuous
g: R" —[0,1] so that m,,({x € R"|g(z) # f(z)}) <e

(v) Let f: R™ — [0,400] be a Lebesgue measurable function which is 0
outside some set of finite Lebesgue measure and finite a.e. on R™. By
taking an appropriate truncation of f prove that for all € > 0 there is
a bounded Lebesgue measurable function h : R — [0, +o0] which is 0
outside some set of finite Lebesgue measure so that m,({x € R™|h(z) #
f(z)}) < e. Now apply the result of (iv) to find a continuous g : R* — R

so that m,,({z € R" | g(z) # f(z)}) < e
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(vi) Find pairwise disjoint open-closed qubes P(*) so that R™ = U;;"iP(k)
and let R®) be the open qube with the same edges as P*). Consider
for each k a small enough dx > 0 so that m,({z € R"|7zwm) 5, (z) #
Xro (2)}) < 5557

(vii) Let f : R™ — [0, +00] be Lebesgue measurable and finite a.e. on
R". If R™ are the qubes from (vi), then each fypzuw : R — [0, +oq]
is Lebesgue measurable, finite a.e. on R™ and 0 outside R*). Apply
(v) to find continuous g : R™ — R so that m,({x € R"|gr(zx) #
f(@)xrw (2)}) < 7557

Prove that m, ({z € R" | Trw 5, ()gx(x) # f(2)Xrw (2)}) < 57

Define g = Zziol TRt s, 9k and prove that g is continuous on R™ and that

mn({z € R"[g(z) # f(2)}) <e. _
(viii) Extend the result of (vii) to all f : R™ — R or C which are Lebesgue

measurable and finite a.e. on R™.

Let f : R™ — R be continuous at m,-a.e. x € R™. Prove that f is
Lebesgue measurable on R™.
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Chapter 7

Integrals

7.1 Integrals of non-negative simple functions.
In this whole section (X, X, 1) will be a fixed measure space.

Definition 7.1 Let ¢ : X — [0,400) be a non-negative measurable simple
function. If ¢ = 1" | KiXE, is the standard representation of ¢, we define

[ odu=Y" runEn)
X k=1

and call it the integral of ¢ over X (with respect to 1) or, shortly, the
(u-)integral of ¢.

Sometimes we want to see the independent variable in the integral and then we
write [y ¢(x) dp(z).

From now on, if it is obvious which measure space (X,X%, ) we are talking
about, we shall simply say integral, instead of u-integral.

We can make the following observations.

(i) If one of the values ki of ¢ is equal to 0, then, even if the corresponding set
Ej, has infinite measure, the product xgu(E}y) is equal to 0. In other words, the
set where ¢ = 0 does not matter for the calculation of the integral of ¢.

(ii) We also see that [, ¢du < 400 if and only if u(Ejy) < +oo for all k for
which kg > 0. Taking the union of all these E}’s we see that fX pdp < +oo if
and only if p({x € X | ¢(x) > 0}) < +o00. In other words, ¢ has a finite integral
if and only if =0 outside a set of finite measure.

(iii) Moreover, [ ¢ dp = 0 if and only if pu(Ej) = 0 for all k for which xj > 0.
Taking, as before, the union of these E}’s we see that fX ¢ dp = 0 if and only if
p({z € X |¢(x) > 0}) = 0. In other words, ¢ has vanishing integral if and only
if ¢ =0 outside a null set.
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Lemma 7.1 Let ¢ = Z?:l AiXF;, where 0 < \; < +oo for all j and the sets
F; € ¥ are pairwise disjoint. Then [y ¢ dp = Z?Zl Aj(F5).

The representation ¢ = Z?:l AjXxF; in the statement may not be the standard
representation of ¢. In fact, the A;’s are not assumed different and it is not
assumed either that the F;’s are non-empty or that they cover X.
Proof: (a) In case all F;’s are empty, then their characteristic functions are 0
on X and we get ¢ =0 =0 xx as the standard representation of ¢. Therefore
Jxddp = 0-pu(X) =0 = 37" N\ju(Fj), since all measures are 0. In this
particular case the result of the lemma is proved.
(b) In case some, but not all, of the F}’s are empty, we rearrange so that
Fi,...,F; # 0 and Fj4q,...,F, = 0. (We include the case | = n.) Then we
have ¢ = Z;Zl Ajxr;, where all Fj’s are non-empty, and the equality to be
proved becomes [y ¢ dp = 22:1 i (Fy).

In case the F}’s do not cover X we introduce the non-empty set Fj4q =
(FyU---UF))° and the value A\j11 = 0. We can then write ¢ = 22111 AjXF, for

the assumed equality and [ ¢ dp = Zéill Ajp(Fy) for the one to be proved.

In any case, using the symbol k for [ or [ + 1 we have to prove that, if
¢ = Z;”:l AjXF;, where all F; € 3 are non-empty, pairwise disjoint and cover
k
X, then [y ddp =375 \ju(Fy).
It is clear that Aq,..., Ay are all the values of ¢ on X, perhaps with repeti-
tions. We rearrange in groups, so that

)\1 :...:Ak,l :Hla
)\k:1+1 == )‘k1+k2 = K2,
Ak tootbip 141 = " = Mgy ook, = Km

are the different values of ¢ on X (and, of course, k1 +-- -+ k,, = k). For every

i=1,...,m we define E; = Ufil++k+k,1+1 F; = {z € X|¢(x) = ki}, and
then

m
¢ = rixe,
i=1

is the standard representation of ¢. By definition

m ki+--+k;

JRZZEDLTEIED D SR
X i=1 i=1  j=ki+-+ki_1+1
m ki+4--+k; k
=> > Nil(Ey) = Al Ey).
=1 j=ki+---+ki—1+1 Jj=1
Lemma 7.2 If ¢,v are non-negative measurable simple functions and 0 < A <

+00, then [ (p+)du= [y ddu+ [ pdu and [ Apdp =X\ [ pdp.
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Proof: (a) If A =0, then A¢ =0 = 0- xx is the standard representation of A¢
and hence [, Apdp=0-pu(X)=0= X[ ¢dpu.

Now let 0 < A < +o0. If ¢ = Z;nzl KjXE; is the standard representation

of ¢, then \p = ZTZI AKjXE, 1s the standard representation of A¢. Hence
Jx Addu =300 Akju(Ey) = N30 kju(Ey) = A [ ddp.
(b) Let ¢ = >0, kjxp, and ¢ = 370, A Xp; be the standard representations
of ¢ and . It is trivial to see that X = Ui<j<m,1<i<n(E; N F;) and that the
sets F/; N F; € X are pairwise disjoint. It is also clear that ¢ + 1) is constant
kj + A; on each E; N F; and thus

S+ = Y (5 +A)xEnE-
1<j<m,1<i<n
Lemma 7.1 implies that

/X G+9)du= Y (5 + (B NE)

1<j<m,1<i<n

Z kip(E; N Fy) + Z Aip(Ej N F)

1<j<m,1<i<n 1<j<m,1<i<n

j=1 =
=Y kju(E)+ Y \u(F pdu+ [ Ydu.
z " Z / /.

Lemma 7.3 If ¢, are non-negative measurable simple functions so that ¢ <
on X, then [ ¢dp < [y b dp.

Proof: Let ¢ = ZJ L RiXE; and ¢ = > AiXF; be the standard representa-
tions of ¢ and . Whenever E;NF; # 0, we take any z € E; N F; and find

ki = ¢(z) < Y(x) = Therefore since in the calculation below only the
non-empty intersections really matter,

/X ¢dp = Z rp(Ey) = Y ku(EjNE)

1<j<m,1<i<n
< Y B NER) Zm )= [ van.
1<j<m,1<i<n

Lemma 7.4 Let ¢ be non- negative measurable simple function and (A,) an
increasing sequence in X with U, °°A = X. Then fX oxa, du — fX odu.

Proof: Let ¢ = Zj:l kX E; be the standard representation of ¢. Then ¢xa, =
D KiXE; XA, = )joi KjXE;nA,. Lemma 7.1 implies that [y dxa, dp =

Z;n:l riu(E; N Ap).
For each j we see that u(E; N A,) — ( E;) by the continuity of p from

below. Therefore [y dxa, du— 201, kju(Ej) = [y ¢dp.
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Lemma 7.5 Let ¢, ¢1, ¢, ... be non-negative measurable simple functions so
that ¢, < Gpr1 on X for all n.

(i) If limy, oo n < ¢ on X, then lim, o [ dndp < [y ¢ dp.

(i) If ¢ < limy, 4 o0 dn on X, then [y ¢pdp <lim, (oo [y On dp.

Proof: Lemma 7.3 implies that [y ¢, dp < [y ¢ny1 dp for all n and hence the
limit limy, 400 [ @n dp exists in [0, +oc].
(i) Since, by Lemma 7.3, [y ¢ndp < [y ¢dp, we get limy, i oo [y dndp <
Jx ¢ dp-
(i) Consider arbitrary « € [0,1) and define 4,, = {z € X |ad(z) < ¢n(z)} € X.
It is easy to see that (A,,) is increasing and that U;'>] A, = X. Indeed, if there is
any x ¢ U1 A, then ¢,,(z) < ag(x) for all n, implying that 0 < ¢(x) < ad(z)
which cannot be true.

Now we have that a¢ya, < ¢, on X. Lemmas 7.2, 7.3 and 7.4 imply that

aAmmaﬂww

= lim apxa, dp < lim /(bndu.
X n—too Jx

n—-+oo
We now take the limit as o« — 1— and get [, ¢dp < limp, o [y dn dp.

Lemma 7.6 If (¢,) and (¢,) are two increasing sequences of non-negative mea-
surable simple functions and if limg,—, oo ¢ = liMy— 400 P holds on X, then

limn_,+oo fX an d,u = llmn—)+oo fX ¢n dﬂ

Proof: For every k we have that ¢, < lim, . ¢, on X. Lemma 7.5 im-
plies that fX Y dp < limy, 400 fX ¢n dp. Taking the limit in k, we find that

limy,— 400 fX U dp < limy, 4 oo fX O dt.
The opposite inequality is proved symmetrically.

7.2 Integrals of non-negative functions.

Again in this section, (X, X, 1) will be a fixed measure space.

Definition 7.2 Let f : X — [0,+00] be a measurable function. We define the
integral of f over X (with respect to 1) or, shortly, the (u-)integral of

f by
/fw:hm/ﬁmM
X n—-+oo X

where (¢y) is any increasing sequence of non-negative measurable simple func-
tions on X such that lim, o ¢, = f on X.

We may use the symbol [, f(z) du(z) if we want to see the independent variable
in the integral.

Lemma 7.6 guarantees that | « [ dp is well defined and Theorem 6.1 implies the
existence of at least one (¢,,) as in the definition.
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Proposition 7.1 Let f,g: X — [0,+00] be measurable functions and let X €
[0,+00). Then [((f+g)du= [y fdu+ [y gdp and [ Nfdp =X [ fdp.
Proof: We take increasing sequences (¢,), (1) of non-negative measurable
simple functions on X with lim, 4o ¢, = f, lim, 100 ¥ = g on X. Now
(¢n + ¥y) is an increasing sequence of non-negative measurable simple func-
tions with lim, 4o (¢ + ¢5) = f+ g on X. By Lemma 7.2, [ (f + g)du =
limy, 4 oo fX (nt1bn) dp = limy, 4 o fx ¢n dplimy, 4o fX U dp = fX [ dp+
Jx gdp.

Also, (A¢,) is an increasing sequence of non-negative measurable simple
functions on X such that lim, ;. A¢, = Af on X. Lemma 7.2 implies again

that [ Mf dp = lim,—joo [ Abndp = Alimy o [ dndp =X [ fdp.
Proposition 7.2 Let f,g : X — [0,400] be measurable functions such that
f<gonX. Then fodug fng,u.

Proof: Consider arbitrary increasing sequences (¢,) and (¢,,) of non-negative
measurable simple functions with lim, i ¢, = f, lim, 400, = g on X.
Then for every k we have that ¢ < f < g = lim, 400 ¥, on X. Lemma 7.5
implies that [ ¢x dp < limy, 4o [y tn dp = [y gdp. Taking the limit in k we
conclude that [ fdu < [y gdp.

Proposition 7.3 Let f,g: X — [0,+00] be measurable functions on X.
(i) [ fdpu=0if and only if f =0 a.e. on X.
(i) If f =g a.e. on X, then [ fdu= [y gdp.
Proof: (i) Suppose that [y fdu = 0. Define A, = {z € X|1 < f(a)} =
f71([2, +00)) for every n € N. Then 1x4, < f on X and Proposition 7.2 says
that Lp(A,) = [y 2xa, du < [y fdu=0. Thus p(A,) = 0 for all n and, since
{z € X| f(z) #0} =UI>A,, we find that u({z € X | f(z) #0}) =0.
Conversely, let f =0 a.e. on X. Consider an arbitrary increasing sequence
(¢n) of non-negative measurable simple functions with lim,, 4+ ¢, = f on X.
Clearly, ¢, = 0 a.e. on X for all n. Observation (iii) after Definition 7.1 says
that [y ¢, du =0 for all n. Hence [ fdp =1lim, o [ ¢ndp = 0.
(ii) Consider A = {z € X | f(z) = g(x)} € ¥. Then there is some B € ¥ so that
A¢ C B and u(B) = 0. Define D = B¢ C A. Then fxp,gxp are measurable
and fxp = gxp on X. Also, fxp =0 a.e. on X and gyp =0 a.e. on X.
By part (i), we have that [, fxpdu = [y gxsdp = 0 and then Proposi-
tion 7.1 implies [y fdu = [ (fxp + fxs)du = [y fxpdu = [y gxpdp =
Jx(oxp +9xB)dp = [y gdp.

The next three theorems, together with Theorems 7.10 and 7.11 in the next
section, are the most important results of integration theory.

Theorem 7.1 (The Monotone Convergence Theorem) (Lebesgue, Levi)
Let f, fn : X — [0,400] (n € N) be measurable functions on X so that f, <
frny1 a.e. on X and lim, ., fr, = f a.e. on X. Then

lim /fndu:/fdu.
n—-+00 X X
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Proof: (a) Assume that f, < f,11 on X and lim, 1 f, = f on X.
Proposition 7.2 implies that [y f du < [y fay1dp < [y fdp for all n and
hence the lim,, 4o [y fn dp exists and it is < [, fdp.
(i) Take an arbitrary increasing sequence (¢,,) of non-negative measurable simple
functions so that lim,_, . ¢, = f on X. Then for every k we have ¢ <
f = lim,— 4o frn. We now take an arbitrary a € [0,1) and define the set
A, ={z € X|adr(x) < fo(z)} € E. Tt is clear that (A,,) is increasing and
X = Uf>NA,. Tt is also true that agrxa, < f, on X and, using Lemma
75, o fy drdp = [y agpdp = lim, o [y adrxa, dp < limg,qoo [y frdp
Taking limit as o« — 1—, we find [ ¢p dp < lim,— 4 oo [ fn dp. Finally, taking
limit in &, we conclude that [y fdu < lim,_ 4o [ fndp and the proof has
finished.
(ii) If we want to avoid the use of Lemma 7.5, here is an alternative proof of the
inequality fX fdp <lim, .4 fX fndp.

Take an increasing sequence ( ,(Lk)) of non-negative measurable simple func-

tions so that lim, 4 wék) = fr on X. Next, define the non-negative measur-
able simple functions ¢, = max{i/z,(zl), . 7,/1,(1")}.

It easy to see that (¢,) is increasing, that ¢, < f, < f on X and that
¢n — f on X. For the last one, take any z € X and any ¢ < f(z). Find
k so that ¢t < fi(z) and, then, a large n > k so that ¢ < wgk)(x). Then
t < ¢p(x) < f(x) and this means that ¢, (z) — f(x).

Thus [ fdp =lim,—joo [y Ondp <limy_foo [y frdp.

(b) In the general case, Theorem 2.2 implies that there is some A € ¥ with
1(A°) =0 so that f, < f,41 on A for all n and lim,, o fr, = f on A. These
imply that foxa < fatrixa on X for all n and lim, 4o fnxa = fxa on X.

From part (a) we have that lim, o [ faxadp = [y fxadp.
Since f = fxa ae. on X and f, = fu.xa a.e. on X, Proposition 7.3

implies that [ fdu = [y fxadpand [y fandp= [y faxadp for all n. Hence,
limy, 4 o0 fX fadp =lim, 4 fX faxadp = fX fxady= fX fdp.

Theorem 7.2 Let f, f, : X — [0,400] (n € N) be measurable on X so that
X fo=f ae. on X. Then

z/xfndu=/xfdu-

Proof: We write g, = f1 + -+ + f, for each n. (g,) is an increasing sequence
of non-negative measurable functions with g, — f a.e. on X. Proposition 7.1

and Theorem 7.1 imply that >, [y fedu = [y gndp — [y fdp.

Theorem 7.3 (The Lemma of Fatou) Let f, f, : X — [0,+00] (n € N) be
measurable. If f =liminf,, . fn a.e. on X, then

/ fdp < liminf/ fndu.
b'e n—too Jx
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Proof: We define g,, = infy>, fi. Then each g, : X — [0,400] is measurable,
the sequence (gp,) is increasing and g, < f, on X for all n. By hypothesis,
f =lim, 4109, a.e. on X. Proposition 7.2 and Theorem 7.1 imply that

fX fdp=1lim, 4o fX gn dp < liminf,, | fX fndu.

7.3 Integrals of complex valued functions.

Let (X,X, u) be a fixed measure space.

Definition 7.3 Let f : X — R be a measurable function and consider its
positive and negative parts f¥,f~ : X — [0,+00]. If at least one of fx frdu
and [ [~ dp is < 400, we define

/deu:/Xqu*/Xf’du

and call it the integral of f over X (with respect to 1) or, simply, the
(u-)integral of f.

We say that f is integrable on X (with respect to 1) or (u-)integrable
if [ fdp is finite.

As in the case of non-negative functions, we may write [ f(x)du(z) if we want
to see the independent variable in the integral.

Lemma 7.7 Let f : X — R be a measurable function. Then the following are
equivalent:

(i) f is integrable

(i) [ fTdp <400 and [y f~dp < +o0

(iii) [y |f]dp < +oc.

Proof: The equivalence of (i) and (ii) is clear from the definition.

We know that |f| = fT + f~ and, hence, f, f~ < |f| on X. Therefore,
Jx lfldw = [ frdp+ [ f~dp and [y fTdp, [ f~dp < [y |fldp. The
equivalence of (ii) and (iii) is now obvious.

Proposition 7.4 Let f : X — R be a measurable function. If f is integrable,
then

(i) f(z) € R for a.e. x € X and

(i1) the set {x € X | f(x) # 0} is of o-finite measure.

Proof: (i) Let f be integrable. Lemma 7.7 implies [ |f|du < +o0. Consider
the set B = {x € X ||f(z)| = +o00} € X. For every r € (0,400) we have that
rxp < |f| on X and hence ru(B) = [y rxpdu < [ |f|dp < 400. This implies
that u(B) < I [ |f|dp and, taking the limit as 7 — +oo, we find p(B) = 0.
(ii) Consider the sets A = {z € X | f(z) # 0} and A, = {z € X [|f(z)| > L}.

From x4, <|f] on X, we get Lp(A,) = [ 2xa, du < [ |f]dp < +oo.
Thus u(A,) < +oo for all n and, since A = U/ A,,, we conclude that A is of
o-finite measure.
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Definition 7.4 Let f : X — C be measurable. Then |f| : X — [0,+00] is
measurable and we say that f is integrable on X (with respect to u) or,
simply, (u-)integrable, if [, |f|dp < 4oco.

Proposition 7.5 Let f: X — C be measurable. If f is integrable, then
(i) f(x) € C for a.e. x € X and
(i1) the set {x € X | f(z) # 0} is of o-finite measure.

Proof: Immediate application of Proposition 7.4 to | f].

Assume now that f : X — C is a measurable integrable function. By
Proposition 7.5, the set Dy = {z € X | f(z) € C} = f~!(C) € ¥ has a null
complement. The function

f, Oan
fXDf:{O’ OHDJcc : X —-C

is measurable and fxp, = f a.e. on X. The advantage of fxp, over f is
that fxp, is compler valued and, hence, the R(fxp,),S(fxp,;) : X — R
are defined on X. We also have that |[R(fxp,)| < [fxp,| < |f] on X and
similarly |S(fxp;)| < |f| on X. Therefore [, [R(fxp,)ldp < [ |fldp < +oo,
implying that R(fxp,) is an integrable real valued function. The same is true for
3(fxp,) and thus the integrals [ R(fxp,)du and [y S(fxp,) dp are defined
and they are (finite) real numbers.

Definition 7.5 Let f : X — C be a measurable integrable function and let
Dy ={z e X|f(zx) € C}. We define

/deu=/X%(ffo)dqui/X%(ffo)du

and call it the integral of f over X (with respect to 1) or the (u-)integral
of f.

We shall make a few observations regarding this definition.

(i) The integral of an extended-complex valued function is defined only if the
function is integrable and then the value of its integral is a (finite) complex
number. Observe that the integral of an extended-real valued function is defined
if the function is integrable (and the value of its integral is a finite real number)
and also in certain other cases when the value of its integral can be either +oo
or —oo.

(ii) We used the function fxp,, which changes the value oo of f to the value
0, simply because we need complex values in order to be able to consider their
real and imaginary parts. We may allow more freedom and see what happens

if we use a function ; I
- y on f .
F{h, on Dz X =G

where h is an arbitrary X] D%-measurable complex valued function on DS$. It
is clear that ' = fxp, a.e. on X and hence R(F) = R(fxp,) a.e. on X.
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Of course, this implies that R(F)*T = %(fxpfﬁ and %(F)* = %(fXDf)’
a.e. on X. From Proposition 7.3, [, R(F)du = [ R(F)tdu— [ R(F)™ dp =
Ix® ffo )Pdu— [y R(fxp,)” dup= [y R(fxp,)dp. Slmﬂarly, Jx S(F)dp =
xS + S(fxp,)dp. Therefore there is no difference between the possible definition
Jx fdp= [ R(F)dp+i [ S(F)dp and the one we have given. Of course, the
function 0 on Df is the simplest of all choices for h.

(i) If f: X — C is complex valued on X, then Dy = X and the definition
takes the simpler form

fdp= [ R(f +i | S(f)dp.
/ du / (f)dp z/ (f)du
We also have

a%(/xfdu)z/xwm %(/deu)z/X%(fmu.

The next is helpful and we shall make use of it very often.

Lemma 7.8 If f : X — C is integrable, there is F : X — C so that F = f a.e.
on X and [ Fdp= [y fdu.

Proof: We take F' = fxp,, where Dy = f~(C).

Theorem 7.4 Let f,g: X — R or C be measurable so that f = g a.e. on X
and [ fdp is defined. Then [ gdu is also defined and [y gdp = [y fdp.

Proof: (a) Let f,g: X — R. If f = g ae. on X, then f* = g* ae. on X
and f~ =g~ a.e. on X. Proposition 7.3 implies that [, fTdu = [ g du and
Jx fdu= [y g~ dp. Nowif [ f*duor [ f~ duis finite, then, respectively,
Jx 9T dpor [ g~ dpis also finite. Therefore [y gdpu is defined and [ fdpu =
fX gdpu.

(b) Let f,g: X - C and f =g a.e. on X.

If f is integrable, from |f| = |g| a.e. on X and from Proposition 7.3, we find
Jx lgldpn = [y |fldp < +oc and, hence, g is also integrable.

Now, Lemma 7.8 says that there are F,G : X — Csothat F = fandG=g
a.e. on X and also [ Fdu= [ fdpand [, Gdu= [y gdu. From f = g a.e.
on X we see that F G a.e. on X This implies that ?R( ) R(G) a. e on X
and, from ( fX F)du = fX d,u Slrnllarly7 fX F)du = fX G) dp.

Therefore Jx fdu= [y Fdu= [ R(F)du+i [ S(F)dp = [ R(G)du+
i [ S(@)dp= [ Gdu= [y gdpu.

Theorem 7.5 Let f : X — R or C be measurable. Then the following are
equivalent:
(i) f =0 ae onX

(ii) [ [fldp =0
(i) [ fxadp=0 for every A e X.
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Proof: If [, |f|dp = 0, Proposition 7.3 implies that |f| = 0 and, hence, f =0
a.e. on X.

If f=0a.e on X, then fxy4 =0 a.e. on X for all A € 3. Theorem 7.4
implies that [ fxadyu=0.

Finally, let [, fxadpu =0 for every A € 3.

(a)If f: X — Rwetake A = f~1([0,4oc]) and find [ f*du= [y fxadu=0.
Similarly, [, f~dp =0 and thus [, |fldp = [y fTdu+ [ f~ dp=0.

(b) If f: X — C, we first take A = X and find [, fdu = 0. This says, in
particular, that f is integrable. We take some F': X — C so that F = f a.e.
on X.

For every A € ¥ we have Fixyq = fxa a.e. on X and, from Theorem 7.4,
Jx Fxadp = [y fxadp = 0. This implies [ R(F)xadu = [ R(Fxa)dp =
R([y Fxadp) =0 and, from part (a), R(F) = 0 a.e. on X. Similarly, 3(F) = 0
a.e. on X and thus F' =0 a.e. on X. We conclude that f =0 a.e. on X.

Theorem 7.6 Let f: X — R or C be measurable and A € R or C.
(i) If f: X = R, A€ R and [ fdp is defined, then [ \fdp is also defined

and
/X)\fdu:)\/xfdu.

(i1) If f is integrable, then \f is also integrable and the previous equality is
again true.

Proof: (i) Let f : X — R and [ fdu be defined and, hence, either [, fTdu <
+o00 or fX fdp < 4o0.

If 0 < A < 400, then (Af)T = AfT and (Af)~ = Af~. Therefore, at least
one of [((Af)Tdu= X[y fTdpand [ (\f)"du= X[y f~ duis finite. This
means that [ « Af dp is defined and

/kadu=/X(Af)+du—/X(Af)‘du=A(/Xerdu—/Xf‘du)ZA/deu-

If —oo < A <0, then (Af)* = —Af~ and (Af)” = —AfT and the previous
argument can be repeated with no essential change.

If A =0, the result is trivial.

(ii) If f : X — R is integrable and A € R, then [ |Af|du = [A| [ || dp < +o0,
which means that Af is also integrable. The equality [\ Afdp = X [ fdp has
been proved in (i).

If f: X — C is integrable and A € C, the same argument gives that \f is
also integrable.

We, now, take F': X — C so that FF = f a.e. on X. Then, also AF' = \f
a.e. on X and Theorem 7.4 implies that [ AF'du = [\ A\fdp and [, Fdu =
[ [ dp. Hence, it is enough to prove that [\ AF dp = X [ F dpu.

From R(AF) = R(AN)R(F) — S(N)S(F') and from the real valued case we get
that

/X ROF) dyt = RO\ /X ROF) dyi — S(N) /X S(F) dp.
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Similarly,

/X SOF) dy = RO /X S(F) dy+ (V) /X R(F) dp.

From these two equalities

/)\qu:)\/ %(F)du—ki)\/ %(F)du:A/ Fdy.
X X X X

Theorem 7.7 Let f,g: X — R or C be measurable and consider any measur-
able definition of f + g.

(i) If f,g : X — R and [, fdu, [y gdu are both defined and they are not
opposite infinities, then [ (f + g)du is also defined and

/X(f+g)du=/xfdu+/xgdu~

(ii) If f,g : X — R or C are integrable, then f + g is also integrable and the
previous equality is again true.

Proof: (i) Considering the integrals [y f*du, [ f~dp, [ 97 du, [ g~ dp, the
assumptions imply that at most the [, f*du, [, g% dp are 400 or at most the
Jx [ du, [ g~ dp are +oo.

Let [ f~dp <400 and [y g~ dp < 4oo0.

Proposition 7.4 implies that, if B = {z € X | f(zx) # —o0,g(x) # —oo},
then pu(B¢) = 0. We define the functions F' = fxp and G = gxp. Then
F,G: X — (—o00,+0o0] are measurable and F = f and G = g a.e. on X.

The advantage of F,G over f,g is that F(z) + G(z) is defined for every
e X.

Observe that for all measurable definitions of f + g, we have F+G = f+g¢g
a.e. on X. Because of Theorem 7.4, it is enough to prove that the [ (F+G)du
is defined and that [, (F + G)du= [ Fdu+ [ Gdpu.

From F=Ft - F"<FfTandG=G" -G  <GTon X weget F+G<
F*+G" on X. Hence (F+ G)" < F' + G* on X and similarly (F + G)~ <
F~+G™ on X.

From (F+G)” < F~+G on X we find [ (F+G) dp < [ F~du+
Jx G~ dp < +00. Therefore, [ (F 4+ G)dy is defined.

We now have (F+G)t —(F+G)”" =F+G=(Ft+GY)—(F~+G") or,
equivalently, (F+G)* + F~+ G~ = (F+G)" + Ft + G™.

Proposition 7.1 implies that

/ (F+G)* du+/ F~ du+/ G dp = / (F+G)~ du+/ Ft du+/ Gt dp.
X X X X X X

Because of the finiteness of [ (F + G)~ dpu, [ F~ du, [ G~ du, we get
/ (F+G)dy = / (F+G)+du—/ (F+G) du
X X X

103



:/ F+du+/ G+du—/ F‘du—/G_d,u
X X X X
:/ qu+/ Gdu.

X X

The proof in the case when [, fTdu < 400 and [y g7 du < +00 is similar.
(ii) By Lemma 7.8, there are F,G : X — C so that F = f and G = g a.e. on X.
This implies that for all measurable definitions of f + g we have F+G = f+g¢
a.e. on X. Now, by Theorem 7.4, it is enough to prove that F' + G is integrable
and [ (F+ G)dp= [, Fdu+ [, Gdp.

Now [ |F + Gldu < [ |F|ldu+ [ |Gldp < +oco and, hence, F + G is
integrable.

By part (i) we have [ R(F + G)dp = [ R(F)du+ [ R(G)dp and the
same equality with the imaginary parts. Combining, we get [ (F + G)du =
Jx Fdu+ [ Gdp.

Theorem 7.8 Let f,g: X — R be measurable. If [ fdp and [y gdu are both
defined and f < g on X, then

/deué/xgdu-

Proof: From f < g =g — g~ < g" we get ft < g*. Similarly, g < f~.
Therefore, if [ gt du < +oo, then [y f*du < +o0 and, if [ f~dp < +oo,
then [y g~ du < 4oo0.

Hence we can subtract the two inequalities

/f+dM§/g+d/h /g‘dué/f_du
X X X X

and find that [, fdu < [ gdp.

Theorem 7.9 Let f: X — R or C be measurable.
(i) If f : X = R and [ fdp is defined, then

\/deulg/xmdu.

(ii) If f + X — C is integrable, then the inequality in (i) is again true.

Proof: (i) We write | [ fdu| = | [x fTdu— [y f~dul < [ fTdu+ [y [~ dp =
fX |f|dﬂ~
(ii) Consider F : X — C so that F' = f a.e. on X. By Theorem 7.4, it is enough

to prove | [ Fdu| < [y |F|dp.
It fX Fdup = 0, then the inequality is trivially true. Let 0 # fX Fdyu e C

and take A = sign( [y F du) # 0. Then

‘/ qu‘zx/ qu:/ )\quzéR(/ )\qu):/ RAF) du
X X X X X
< [ mopldis [ WFld= [ IFd
X X X
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Theorem 7.10 (The Dominated Convergence Theorem) (Lebesgue) Con-
sider the measurable f, f, : X = R orC (n € N) andg: X — [0, +00]. Assume
that f = lim, 4o frn a.e. on X, that, for alln, |fn,| < g a.e. on X and that
fng,u < 400. Then dll f,, and f are integrable and

/andu—>/xfdu.

Proof: From the |f,| < g a.e. on X we find [y |fu|dp < [y gdp < 400 and
hence f, is integrable. Also, from |f,| < g a.e. on X and f = lim, 400 fn
a.e. on X, we get that |f| < g a.e. on X and, for the same reason, f is also
integrable.

We may now take F, F,, : X — R or C so that F' = f and F,, = f, a.e. on
X for all n. We, then, have |F,| < g a.e. on X and F = lim,_,; F), a.e. on
X and it is enough to prove [, F,dy — [y Fdpu.
(i) Let F,F, : X — R. Since 0 < g+ F,,,g — F}, on X, the Lemma of Fatou
implies that

/ gdu:l:/ Fdp <liminf | (9% F,)du
X X n—too Jx

and hence

/gdu:l:/quS/gdu—i—liminf:ﬁ:/ F, dpu.
X X X n—too  Jx

Since [ gdp is finite, we get that £ [\ Fdp < liminf, . .+ [, F, dp and
hence

lim Sup/ F,du < / Fdp < liminf F, du.
X X X

n—-+o0 n—oo
This implies [ F, du — [ Fdp.
(ii) Let F,F, : X — C. From |R(F,)| < |F,| < g a.e. on X and from
R(F,) — R(F) a.e. on X, part (i) implies [, R(F,)dy — [ R(F)dp. Simi-
larly, [ S(F,)dp — [y S(F)dp and, from these two, [\ Frdp — [y Fdpu.
Theorem 7.11 (The Series Theorem) Consider the measurable f, f, : X —
RorC meN). If 725 [ | fal dp < +o0, then
(i) S57 fulz) exists for a.e. x € X,
(i1) if f = Zzz fn a.e. on X, then

/deuz/xfndu-

Proof: (i) Define g = Zz |fn] + X — [0,400] on X. From Theorem 7.2 we
have [y gdu = tee Jx |faldp < +o0. This implies that g < 400 a.e. on
X, which means that the series Z:g fn(z) converges absolutely, and hence
converges, for a.e. x € X.

(i) Consider s, = > .p_, fx for all n. Then lim, .18, = f ae. on X
and [s,| < g on X. Theorem 7.10 implies that Y. | [ fodp = [y sndp —
Jx I dp.
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Theorem 7.12 (Approximation) Let f : X — R or C be integrable. Then
for every e > 0 there is some measurable simple function ¢ : X — R or C so

that [ |f — ol dp <e.

Proof: If f : X — [0,400] is measurable with [, fdu < oo, there is an
increasing sequence (¢,) of non-negative measurable simple functions so that
¢n 1 fon X and [y ¢ndp 1 [ fdp. Therefore, for some n we have [, fdu —
€< [y Ondu < [ fdp. Thus [y |f = 6uldp = [ (f = 6n) dpe < e

Now if f : X — R is integrable, then [ f*du < +o0o and [ f~dp <
+o0. From the first case considered, there are non-negative measurable simple
functions ¢1, ¢ so that [, [fT — ¢1ldp < § and [ |f~ — ¢o|ldp < 5. We
define the simple function ¢ = ¢ — ¢ : X — R and get [, |f — ¢[dp <
Jx lff = uldu+ [ |f~ — b2l dp <.

Finally, let f : X — C be integrable. Then there is F : X — C so that
F = f ae. on X. The functions R(F'),J(F) : X — R are both integrable,
and hence we can find real valued measurable simple functions ¢1, ¢2 so that
Jx IR(F) — ¢1]dp < § and [ [S(F) — ¢2|dp < §. We define ¢ = ¢1 +i¢p2 and
get fx\f—¢|dH:fX|F—¢|dH<€~

7.4 Integrals over subsets.

Let (X, %, 1) be a measure space.

Let A€ Y and f: X — R or C be measurable. In order to define an integral
of f over A we have two natural choices. One way is to take fx 4, which is f in A
and 0 outside A, and consider [y fxa du. Another way is to take the restriction
f1A of f on A and consider [,(f]A)d(u]A) with respect to the restricted p]A
on (A,X]A). The following lemma says that the two procedures are equivalent
and give the same results.

Lemma 7.9 Let Ac X and f: X — R or C be measurable.

(i) If f : X — R and either [y fxadp or [,(f1A)d(u]A) exists, then the other
also exists and they are equal.

(i) If f + X — C and either [ [fxaldp or [, |f1A|d(n]A) is finite, then the
other is also finite and the integrals [y fxadp and [,(f]1A)d(pn]A) are equal.

Proof: (a) Take a non-negative measurable simple function ¢ = Z;ﬂzl KiXE;
with its standard representation. Now ¢y = Z;”Zl KiXE;nA + X — [0,400)
has [ ¢xadp = 377" wju(E;NA). On the other hand, ¢]A = 377" | KjXEna
A — [0,400) (where we omit the terms for which E; N A = ()) has exactly the
same integral [, (¢]A4) d(u]A) = 3770, ki (p] A)(E; N A) = 3700 kju(E; N A).
(b) Now let f : X — [0,+00] be measurable. Take an increasing sequence
(¢n) of non-negative measurable simple ¢, : X — [0,400) with ¢, — f.
Then (¢nxa) is increasing and ¢,xa — fxa. Also, (¢,]A) is increasing
and ¢n]A - f]A Hence, by (a) we get, fX fXA = hmn~>+oo fX PnXxA d:“’ =
lin e [4(G]A) (11 4) = [,(F14) () A).

(c) If f : X — R is measurable, then fTxa = (fxa)" and f~xa = (fxa)” and
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o (1) = £14md (1147 = 14 B by () weset [ ()
Jx f+XA d,u Ja(FT1A) d(p] A) = [,(f] d(u]A) and also [y (fxa)” du =
JA(f] d(u]A). These show (i).

(d) Fmally, let f: X — C be measurable. Then |fxa| = |f|xa and |f]A| =
A By (b) we have [ |fxaldn = [y lflxadn = [y(f14)d(a]4) =
J4|f1A]d(p] A), implying that fxa and f]A are simultaneously integrable or
non-integrable.

Assuming integrability, there is an F' : X — C so that F = fy4 a.e. on
X. Tt is clear that Fx4a = fxa a.e. on X and, also, F|A = f]A a.e. on A.
Therefore, it is enough to prove that [, FXA du = [L(F1A)d(u]A).

S e e
S R(F1A) d(n] A). Similarly, [ S(Fxa) d,u J4S(F1A)d(u]A) and we con-
clude that fXFXAdM JA(F1A) d(p] A).

Definition 7.6 Let f: X — R or C be measurable and A € 3.
(i) If f : X — R and [ fxadp or, equivalently, [,(f1A)d(u]A) is defined,
we say that the fA fdup is defined and define

/Afdu=/XfXAdu=/A(ﬂA)d(u1A)-

(ii) If f + X — C and fxa is integrable on X or, equivalently, f]A is integrable
on A, we say that f is integrable on A and define fA fdu exactly as in (i).

Lemma 7.10 Let f: X — R or C be measurable.
(i) If f : X — R and [ fdu is defined, then [, f dpu is defined for every A € X.
(ii) If f : X — C is integrable then f is integrable on every A € 3.

Proof: (1) We have (fxa)™ = fTxa < f¥ and (fxa)” = fxa < f~ on
X. Therefore, either [ (fxa)Tdp < [y fTdp < 400 or [((fxa)” du <
Jx [~ du < +oo. This says that [ fxadp is defined and, hence, [, fdpu is
also defined.

(ii) If f: X — C is integrable, then [y |fxaldp < [y [fldp < +oo and fxa is
also integrable.

Proposition 7.6 Let f : X — R be measurable and fX fdu be defined. Then
either [, fdp € (—oo,400] for all A€ ¥ or [, fdu € [—o0,+00) for all A € 3.

Proof: Let [, f~du < +oo. Then [, (fxa)™ dp < [y f~ du < 400 and hence

Jofdu= [y fxadp>—ocforall AeX.
Similarly, if [ fTdu < 400, then [, fdu < +oc for all A € X.

Theorem 7.13 If f : X — R and fod,u is defined or f : X — C and f is
integrable, then

(i) [, fdp=0 for all A € ¥ with p(A) =0,

(i) [, fdp= e u, fdp for all pairwise disjoint A1, As, ... € ¥ with A =
U234,
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(iii) fAn fdp— [, fdu for all increasing (Ay,) in X with A = US> A,,
(iv) fAn fdp — [, fdu for all decreasing (A,) in ¥ with A = N} A, and
|fA1fdu| < +o0.

Proof: (i) This is easy because fxa =0 a.e. on X.
(i) Let Ay, Ag, ... € X be pairwise disjoint and A = U+°°A
If f:X — [0,400] is measurable, since fxs = n:l >} fxa, on X, Theorem
7.2 implies [, fdp = [y fxadu=322 [y Fxa,dun=>3,2 [, fdu.
If f: X — C and f is integrable, we have by the previous case that
lfxanldn =302 [ Ifldp = [4|fldp < +o0. Because of fxa =
% fxa, on X, Theorem 7.11 implies that [, fdu = e u, fap.

If f: X — R and fX f~dp < 400, we apply the ﬁrst case and get
anAf du—fAf+duandZ W f7dp = [, [~ du < +o0. Sub-
tracting, we find a fdu= [, f d,u

If fX frdu < —|—oo7 the proof is similar.
(iii) Write A = A3 U U °5(Ag \ Aig—1), where the sets in the union are pairwise
disjoint. Apply (ii) to get Sy fdp= fAl fdu+S2r2 ‘fAk\Ak fdu= fA fdu+
limp, sy o0 305 o fAk\Ak Vfdp=1imy, o fAn fdp.
(iv) Write A; \ A = U2 (A1 \ A,,), where (A; \ A,) is increasing. Apply (iii)
to get fAl\AnfdM_)fAl\Afd'u

From fAl\Afd/,L+fAfdu = [, fdp and from | [, fdu| < 400 we im-
mediately get that also | [ 4 fdu| < +oo. From the same equality we then get
fAl\Afdu = [, fdp— [, fdp. Similarly, fAl\Anfdu = fAlfd,u—fAnfdu
and hence [, fdu—[, fdu— [, fdu—[, fdu. Becauseof| [, fdu|<+oo
again, we finally have fA" fdu— [, fdu.

We must say that all results we have proved about integrals [  over X
hold without change for integrals [ 4 over an arbitrary A € X. To see this we
either repeat all proofs, making the necessary minor changes, or we just apply
those results to the functions multiplied by x4 or to their restrictions on A. As
an example let us look at the following version of the Dominated Convergence
Theorem.

Assume that f, f, : X — R or C are measurable, that g : X — [0, +00] has
Jir9dp < 400, that |fu| < g a.e. on A and f, — f a.e. on A. The result is
that [, fodp — [, fdp.

Indeed, we have then that [, gxadp < +o0, that |f,xa| < gxa a.e. on X
and foxa — fxa a.e. on X. The usual form of the dominated convergence
theorem (for X) implies that [, fndp = [y faxadp — [y fxadp= [, fdp.

Alternatively, we observe that [,(g]A)d(u]A) < 400, that |f,]A| < g]A
a.e. on A and f,]A — f]A a.e. on A. The dominated convergence theorem
(for A) implies that [, fndp= [,(fa]A)d — [A(f1A) d(u]A) = [, [ dp.
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7.5 Point-mass distributions.

Consider the point-mass distribution p induced by a function a : X — [0, +o0]
through the formula
H(E) = Z Az

zEE
forall E C X.
We observe that all functions f : X — Y, no matter what the (V,Y’) is, are
(X, ¥')-measurable.
If ¢ = Z?:l KjXE; 18 any non-negative simple function on X with its stan-
dard representation, then [, ¢du = 2?21 kin(Ej) = Z?:l Hj(ZzGEj az) =
> (ZIGE], Kjag) = > i1 (erEj ¢(x)a,). We apply Proposition 2.6 to

get
/ngdu = Z o(x) ag.

zeX

Proposition 7.7 If f: X — [0, +0o0] then

| ran=3 f@a.

zeX

Proof: Consider an increasing sequence (¢,) of non-negative simple functions
so that ¢, 1 f on X and [y ¢pdp 1 [ fdp.

Then [y ndp = Y cx dn(x)as < Y cx f(2)a, and, taking limit in n,
we find [, fdp <Y o f(@)as.

If Fis a finite subset of X, then >  _pon(r)ar < > cx On(r)ar =
fX ¢n dp. Using the obvious limy, oo Y cp @n(T) az = Y, cp f(2) @z, we find
> ower f(¥)az < [y fdp. Taking supremum over F, 3+ f(z)a, < [ fdp
and, combining with the opposite inequality, the proof is finished.

We would like to extend the validity of this Proposition 7.7 to real valued or
complex valued functions, but we do not have a definition for sums of real valued
or complex valued terms! We can give such a definition in a straightforward
manner, but we prefer to use the theory of the integral developed so far.

The amusing thing is that any series ), _; b; of non-negative terms over the
general index set I can be written as an integral

>obi= [ baz.
iel 4

where f is the counting measure on I (and we freely identify b; = b(7)). This is
a simple application of Proposition 7.7.

Using properties of integrals we may prove corresponding properties of sums.
For example, it is true that

S bite) =) bi+Y ¢, D> Ai=A> b

i€l iel iel iel el
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for every non-negative b;, ¢; and A. The proof consists in rewriting || ;(btc)df =
J;bdt+ [;cddand [, Abdf =\ [,bd}§ in terms of sums.

For every b € R we write bt = max{b,0} and b~ = —min{b, 0} and, clearly,
b=>bt—b" and |b]| =bT +b".

Definition 7.7 If I is any index set and b : I — R, we define the sum of
{bi}icr over I by

I S

icl iel iel
only when either Y, ;b < 400 or 3, b; < 4oo. We say that {b;}icr is

summable (over 1) if 3, ., b; is finite or, equivalently, if both 3, b and
> icr bi are finite.

Since we can write

Zbi:ij—Zb;:/Ib+dﬁ—/jb‘dﬁ:/lbdﬁ

i€l i€l i€l

iel

and also

Z\bi\:ijJer;:/b+dﬁ+/lb*djj:/j|b|dﬁ,

iel iel iel I

we may say that {b;};er is summable over I if and only if b is integrable over
I with respect to counting measure § or, equivalently, if and only if Y7, |bi| =
J; bl dt < +o0. Also, the Y-, ., bi is defined if and only if the [, bd} is defined
and they are equal.

Further exploiting the analogy between sums and integrals we have

iel

Definition 7.8 If I is any index set and b : I — C, we say that {b;}icr is
summable over I if ), |b;| < +oc.

This is the same condition as in the case of b: I — R.

Proposition 7.8 Letb: I — R or C. Then {b;}ics is summable over I if and
only if the set {i € I|b; # 0} is countable and, taking an arbitrary enumeration
(i1, iz, ...} of it, 325 biy| < +o0.

Proof: An application of Propositions 2.3 and 2.4.

In particular, if {b;};cs is summable over I then b; is finite for all ¢ € I. This
allows us to give the

Definition 7.9 Let b : I — C be summable over I. We define the sum of

{bi}icr over I as
D b= R(bi)+iy S(bi).

i€l icl icl

110



Therefore, the sum of complex valued terms is defined only when the sum is
summable and, hence, this sum always has a finite value. Again, we can say
that if b : I — C is summable over I (which is equivalent to b being integrable
over I with respect to counting measure) then

> b _/bdu

i€l

We shall see now the form that some of the important results of general
integrals take when we specialize them to sums. They are simple and straight-
forward formulations of known results but, since they are very important when
one is working with sums, we shall state them explicitly. Their content is the
interchange of limits and sums. It should be stressed that it is very helpful to
be able to recognize the underlying integral theorem behind a property of sums.
Proofs are not needed.

Theorem 7.14 (i) (The Monotone Convergence Theorem) Let b,b*) :
I —[0,400] (k€ N). Ifb™ 1 b; for all i, then Y ,c, b 15, bi
(i) Let b*) < T — [0, +0c] (k € N). Then Y, (3055 bﬁ’“) = I (e 0.
(iii) (The Lemma of Fatou) Let b,b*) : I — [0,+00] (k € N). If b; =
liminfy, 400 b for alli € I, then Y ,c; by < liminfy o0 3,e; b,
(iv) (The Dominated Convergence Theorem) Let b,b*) : I — R or C
(k € N)and ¢ : I — [0,+00]. If \b(k)| < ¢ foralliand k, if Y, ;¢ < 400
and if b — b; for all i, then Y, b — 3., bi
(v) (The Series Theorem) Let b*) : I — R or C (k € N). Assuming that
Z:{(Zieﬂbgk)b < oo, then 3755 bgk) converges for every i. Moreover,
Cier(CiZ8Y) = TiS (Sier 7).
Observe that the only #-null set is the (). Therefore, saying that a property
holds f-a.e. on I is equivalent to saying that it holds at every point of I.
Going back to the general case, if y is the point-mass distribution induced
by the function a : X — [0, +oo] and f : X — R, then [, fdu is defined

if and only if either Ezexf (x)ay = [y fTdp < +o0or D oy [T (2)a, =
Jx [~ dp < 400, and in this case we have

[ran=[ srau= [ an= Y@= Y F @ = 3 s

zeX reX rzeX

icl

Moreover, f is integrable if and only if Y- |f(x)]as = [y [f|dp < +oo. This
is also true when f : X — C, and in this case we have

[ fan= 3 R0, @)as +i Y S @n, )
zeX reX
where Dy = {z € X | f(z) # oo}. Since ) . |f(x)|az < +o0, it is clear that
f(z) = oo can happen only if a, = 0 and a, = +oo can happen only if f(x) = 0.
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But, then f(z)a, € C for all * € X and, moreover, f(x)xp,(v)a, = f(v)a, for
all x € X. Therefore, we get

/X Fdu= Y R(f(@)as) +i 3 S(f@)as) = 3 fla)as.

zeX rzeX rzeX
Now we have arrived at the complete interpretation of sums as integrals.

Theorem 7.15 Let u be a point-mass distribution induced by a : X — [0, +00].
Iff : X — R orC, then the [ fdu exists if and only if the 3 .« f(x)a, exists

and, in this case,
/ fdu= Z f(z)a,.
X

zeX

A simple particular case of a point-mass distribution is the Dirac mass dy,
at g € X. We remember that this is induced by a, =1 if z = x9 and a, =0
if x # x¢. In this case the integrals become very simple:

/ f by, = fo)
X

for every f. It is clear that f is integrable if and only if f(zo) € C. Thus,
integration with respect to the Dirac mass at xqg coincides with the so-called
point evaluation at xg.

7.6 Lebesgue integral.

A function f : R® — R or C is called Lebesgue integrable if it is integrable
with respect to m,.

It is easy to see that every continuous f : R™ — R or C which is 0 outside
some bounded set is Lebesgue integrable. Indeed, f is then Borel measurable
and if @ is any closed interval in R™ outside of which f is 0, then |f| < Kxg,
where K = max{|f(z)||z € Q} < +oo. Therefore, [o, |f|dm, < Km,(Q) <
400 and f is Lebesgue integrable.

Theorem 7.16 (Approximation) Let f : R® — R or C be Lebesque inte-
grable. Then for every e > 0 there is some continuous function g : R™ — R or
C which is 0 outside some bounded set so that [g, |g — f|dm, <e.

Proof: (a) Let —0o < a < b < +o0o and for each § € (0,%5%) consider the

continuous function 7,55 : R — [0,1] which is 1 on (a + 46,6 — ¢), is 0 outside
(a,b) and is linear in each of [a,a + 6] and [b — 4, b].

Let R = (a1,b1) X -+ X (an,b,) be an open interval in R™. Consider, for
small § > 0, the open interval Rs = (a1 +6,b1 —6) X -+ X (an + 6,b, —8) C R.
Then it is clear that, by choosing ¢ small enough, we can have m,(R\ Rs) < €.
Define the function 755 : R™ — [0,1] by the formula

TRJS(xl’ s 7xn) = Ta17b1,5(x1) o Tanybvué(xn)'
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Then, 7r s is continuous on R”, it is 1 on R; and it is 0 outside R. Therefore,
fRn ITR.s — XR|MH < Mp(R\ Rs) < €.
(b) Let E € L, have m,(F) < +o0o. Theorem 4.6 implies that there are
pairwise disjoint open intervals Ry,..., R; so that m,(EA(R;U---URy)) < §
The functions xg and xg, + --- + xg, differ (by at most 1) only in the set
EA(Ry U---UR;). Hence, fR" |Zi:1 Xr, — XE|dm, < §.
By (a), we can take small enough § > 0 so that, for each R;, we have
1
Jrn ITRis — XR:Mn < 37 This implies [g. [> 0,21 Tri.6 — Doim1 XR, | dmyn <
1
dlim13 = 5
Denoting ¢ = 3°_, 7r, s : R” — R, we have Jrn 10 —xE|dmy, < e. Observe
that ¢ is a continuous function which is 0 outside the bounded set U._, R;.
(¢) Let now f : R” — R or C be Lebesgue integrable. From Theorem 7.12
we know that there is some Lebesgue measurable simple ¢ : R® — R or C so
that [g.[¢ — fldm, < §. Let ¢ = 377", kjxm, be the standard representa-

2
tion of v, where we omit the possible value k = 0. From Z;”:l |kj|mn(E;) =

Jon [0l dmy < [ |fldmn+ [g. |f =] dmy, < 400, we get that m,, (E;) < 400
for all j. By part (b), for each E; we can find a continuous ¢; : R® — R so
that [g. V5 — x5, | dm, < ST e

If we set g = Z;nzl k;%;, then this is continuous on R™ and

/Ig—fldmné/ |g—w|dmn+/ W~ fldmy,
n R’IL R’!L

m
€
<Z/ |K,jwj—linEj|dmn+*
= /Re 2
m

<Z|]| \;@\ =e.

Since each 1); is 0 outside a bounded set, g is also 0 outside a bounded set.

We shall now investigate the relation between the Lebesgue integral and the
Riemann integral. We recall the definition of the latter.

Assume that @Q = [a1,b1] X« - X[an, by] is a closed interval in R™ and consider
a bounded function f: Q — R.

If | € N is arbitrary and @1, ..., Q; are arbitrary closed intervals which have
pairwise disjoint interiors and so that Q = Q1 U --- U @y, then we say that

A={Q1,...Qi}

is a partition of Q. If P, Py, ..., P, are the open-closed intervals with the same
sides as, respectively, @, Q1,...,Qy, then {Q1,...Q;} is a partition of @ if and
only if the Py, ..., P, are pairwise disjoint and P = P;U---UP;. Now, since f is
bounded, in each @; we may consider the real numbers m; = inf{f(z) |z € Q;}
and M; = sup{f(z) |z € Q;}. We then define the upper Darboux sum and
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the lower Darboux sum of f with respect to A as, respectively,

l
(f;4) =) M;vol, (@),

j=1

l
S(f;8) = myvola(Q,).
j=1

If m =inf{f(z) |z € Q} and M = sup{f(z)|z € Q}, we have that m < m; <
M; < M for every j and, using Lemma 4.2, we see that
mvol,(Q) < X(f;A) < B(f;A) < Mvol,(Q).
If Ay = {le), el Ql(ll)} and Ay = {Q?), e Ql(j)} are two partitions of @,

we say that A, is finer than A, if every QZ(-Q) is included in some Q;l). Then it

is obvious that, for every le) of A1, the QEQ)’S of Ay which are included in Q§1)
cover it and hence form a partition of it. Therefore, from Lemma 4.2 again,

mgl) VOln(Q;D) < Z mEQ) voln(Qz@))
QPcelh

< Y MP ol (@) < MM vol, (QV).
PcqM

Summing over all j =1,...,1; we find
B(f; A1) < E(f; A2) < B(f;42) <B(f;A4).

Now, if Ay = {Qg), cey Ql(ll)} and Ay = {Q?), e, Qg)} are any two partitions
of @, we form their common refinement A = {Q§1)0Q§2) 1< <l,1<i<lI}.
Then, X(f; A1) < B(f;A) < B(f;A) < 3(f; Az) and we conclude that

mvol,(Q) < X(f; A1) < E(f;Az) < Mvol,(Q)

for all partitions Ay, As of Q. We now define

(Rn)/ f =sup{Z(f; A)| A partition of Q}
—Q

(Rn)/Qf = inf{3(f; A)| A partition of Q}

and call them, respectively, the lower Riemann integral and the upper
Riemann integral of f over Q. It is then clear that

mvol,(Q) < (Rn) / /< (R / S Mol (@)
—Q
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We say that f is Riemann integrable over @ if (R”)iQf = (Rn)TQf and

in this case we define

®o) [ 1= o) [ - =) [ 1

to be the Riemann integral of f over Q.

Lemma 7.11 Let Q be a closed interval in R™ and f : Q — R be bounded.
Then f is Riemann integrable over Q if and only if for every € > 0 there is
some partition A of @ so that X(f; A) —X(f;A) <e.

Proof: To prove the sufficiency, take arbitrary € > 0 and the corresponding A.
Then 0 < (Ry) [ f — (Rn)fo < X(f;A) — X(f;A) < e. Taking the limit as
€ — 04, we prove the equality of the upper Riemann integral and the lower
Riemann integral of f over Q. o

For the necessity, assume (R")iQf = (Rn)fo and for each ¢ > 0 take

partitions A1, Ag of @ so that (R,) fo -5 < X(f;A1) and N(f;As) <

(Rn) fQ f + 5. Therefore, if A is the common refinement of A; and Aj, then
S(f;8) = 2(f;A) < B(f;42) = B(f; A1) < e

Proposition 7.9 Let Q be a closed interval in R™ and f : Q — R be continuous
on Q. Then f is Riemann integrable over Q.

Proof: Since f is uniformly continuous on @), given any € > 0 there is a § > 0
so that | f(z) — f(y)| < m for all z,y € @ whose distance is < §. We take

any partition A = {Q1,...,Q;} of @, so that every Q; has diameter < 6. Then

If(x) — fly)| < VOle(Q) for all ,y in the same @;. This implies that for every

Q; we have M; —m; = max{f(z)|z € Q;} —min{f(y) |y € Q;} < m.
Hence

l
S 8) = Z(£38) = 300 = my) vola (@) < s

j=

!
vol, (Q;) =€
=1

and Lemma 7.11 implies that f is Riemann integrable over Q).

Theorem 7.17 Let Q be a closed interval in R™ and f : Q — R be Riemann
integrable over Q. If we extend f as 0 outside Q, then f is Lebesgue integrable

and
R Q Q
Proof: Lemma 7.11 implies that, for all £k € N, there is a partition A, =

{ng), ... ,Ql(f)} of Q so that X(f; Ax) —X(f; Ax) < % We consider the simple
functions
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where Pj(k) is the open-closed interval with the same sides as Q§-k) and m§-k) =

inf{f(z) |z € QE—'“)}, M;k) =sup{f(z)|z € Qy“)},
From X(f; Ag) < (Rn) fQ f < 3(f; Ag) we get that

S A0, 5/ Ag) — / /.

It is clear that ¥, < fxp < ¢ for all k, where P is the open-closed interval
with the same sides as (). It is also clear that

Uy
Yedmy, =Y m vol, (P = S(f; Ar)
j=1

R

Iy
S dmy, = M vol, (PM) = S(f; Ay).
R?’L

j=1

Hence [g.(¢x — ¥r) dm, < 1 for all k.
We define g = limsupy,_,, ., ¥ and h = liminfy_, {  ¢5 and then, of course,
g < fxp < h. The Lemma of Fatou implies that

OS/ (h—g)dmnglkiminf/ (o — W) dmy, = 0.

+oo

By Proposition 7.3, g = h a.e. on R" and, thus, f = g = h a.e. on R™.
Since g, h are Borel measurable, Proposition 6.24 implies that f is Lebesgue
measurable. f is also bounded and is 0 outside Q). Hence |f| < Kxg, where
K = sup{|f(z)||z € Q}. Thus, [g.|fldm, < Km,(Q) < +oo and f is
Lebesgue integrable.

Another application of the Lemma of Fatou gives

/ (h— fxp)dm, < lkiminf (¢k - fxp)dm,

—hminfE fiAg) — / fxpdmy,

:(R’ﬂ)/Qf_ RanPdmn-

Hence [g,hdm, < (R,) fo and, similarly, (R,) fo < Jgn gdmy,. Since
f=g=hae. on R" we conclude that

(Rn)/Qf— f dm,.

R”

The converse of Theorem 7.17 does not hold. There are examples of bounded
functions f : Q@ — R which are Lebesgue integrable but not Riemann integrable
over Q.
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Example:
Define f(z) = 1, if # € @ has all its coordinates rational, and f(x) = 0, if
x € @ has at least one of its coordinates irrational. If A = {Q1,...,Q}
is any partition of @), then all @;’s with non-empty interior (the rest do not
matter because they have zero volume) contain at least one z with f(z) = 1
and at least one x with f(z) = 0. Hence, for all such @); we have M; =1 and
m; = 0. Hence, 3(f;A) = vol,(Q) and I(f;A) = 0 for every A. This says
that (R1)[,f = vol,(Q) and (Rn)fo = 0 and f is not Riemann integrable
over Q.

On the other hand f extended as 0 outside @ is 0 a.e on R™ and hence it is
Lebesgue integrable on R™ with [, fdm, = fQ fdm, =0.

Theorem 7.17 incorporates the notion of Riemann integral in the notion of
Lebesgue integral. It says that the collection of Riemann integrable functions is
included in the collection of Lebesgue integrable functions and that the Riemann
integral is the restriction of the Lebesgue integral on the collection of Riemann
integrable functions. This provides us with greater flexibility over the symbol
we may use for the Lebesgue integral, at least in the case of bounded intervals
[a,b] in the one-dimensional space R. The standard symbol of calculus for the
Riemann integral (R;) f[a’b] f is the familiar

/abf or /abf(:v)dx.

We may now use the same symbol for the Lebesgue integral f[a,b] f dmy without
the danger of confusion between the Riemann and the Lebesgue integrals when
the function is integrable both in the Riemann and in the Lebesgue sense. Bear
also in mind that the Lebesgue integrals f[a’b] fdmy, f(a,b] fdmy, f[a,b) fdmy
and f(a’b) f dm;y are all the same, since the one-point sets {a}, {b} have zero

Lebesgue measure. Therefore, we may use the symbol ff f(z) dx for all these
Lebesgue integrals. This is extended to cases where the Riemann intgral does
not apply. For example, we may use the symbol

/+°° f(x)dx

— 00

for the Lebesgue integral fR f dmy and, likewise, the symbol fa+°° f(z) dx for the
Lebesgue integral f[a#w) fdmy and the symbol ffoo f(z) dzx for the Lebesgue
integral f(—oo,b] fdm;.

Theorem 7.17 provides also with a tool to calculate Lebesgue integrals, at
least in the case of R. If a function is Riemann integrable over a closed interval
[a,b] C R, we have many techniques (integration by parts, change of variable,
antiderivatives etc) to calculate its (Rq) f[a)b} f which is the same as f[a,b] fdm;.
In case the given f is Riemann integrable over intervals [ay,bx] with ar | —oo
and by T 400 and we can calculate the integrals (R) f[ak,bk] f= f[ ] fdmaq,

ak,by
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then it is a matter of being able to pass to the limit f[ak,bk] fdmy — [ fdmy
to calculate the Lebesgue integral over R. To do this we may try to use the
Monotone Convergence Theorem or the Dominated Convergence Theorem.

Another topic is the change of Lebesgue integral under linear transformations
of the space.

Proposition 7.10 Let T : R™ — R™ be a linear transformation with det(T) #
0. If (Y,%') is a measurable space and [ : R® — Y is (L, %Y')-measurable, then
foT t:R" =Y is also (L,,Y)-measurable.

Proof: For every E € ¥/ we have (f o T™Y)"YE) = T(f~Y(E)) € L,, because
of Theorem 4.8.

Theorem 7.18 Let T': R" — R" be a linear transformation with det(T) # 0
and f:R"™ — R or C be Lebesgue measurable.
(i) If f: R" — R and the [g, fdm, ezists, then the [g, fo T 'dm, also
exists and
foT tdm, = |det(T)|/ fdm,.

R’Vl Rn
(ii) If f : R™ — C is integrable, then f o T~ is also integrable and the equality
of (i) is again true.

Proof: (a) Let ¢ : R™ — [0,400) be a non-negative Lebesgue measurable
simple function and ¢ = Z;n:l kjxE; be its standard representation. Then
Jrn @ dmn = 3700 kyma (E)).

It is clear that ¢ o 71 = 37 | wjxm, o T—" = 37" kX7 () from which
we get [, ¢ o T~ dm, = 300, kjma(T(Ey)) = [det(T)| 37, kjmn(E;) =
|det(T)] [ & .

(b) Let f : R™ — [0,+o0] be Lebesgue measurable. Take any increasing
sequence (@) of non-negative Lebesgue measurable simple functions so that
¢r — f on R™ Then (¢, o T7!) is increasing and ¢, o T~! — foT~!
on R™. From part (a), [g. f o T=ldm, = lims_ o Jrn Ok © T-Ydm, =
| et (T) 1+ oc g @1 i = | Ae8(T)] iy f diia.

(c) Let f: R™ — R and the [g, fdm, exist. Then (foT )" = ftoT"!
and (foT ')~ = f~oT7 ! and from (b) we get [, (f o T ") dm, =
|det(T)| [gn [T dmy and [o,. (f o T7) " dmy, = |det(T)| [gn [~ dmy. Now (i)
is obvious.

(d) Let f: R™ — C be integrable. From |f o T~!| = |f| o T~' and from (b) we
have that [5,.|f o T~ |dm, = |det(T)| [g. |f]dm, < +oo. Hence foT™! is
also integrable.

We take an F': R — C so that F' = f a.e. on R™.

If A={xr e R"|F(x) # f(r)} and B = {x € R"|FoT (x) # fo
T-1(x)}, then B = T(A). Hence, m,(B) = |det(T)|m,(A) = 0 and, thus,
FoT ! = foT ! ae. on R™ Therefore, to prove (ii) it is enough to prove
Jan FoT dm, = |[det(T)| [gn F dmy,.
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We have R(FoT ') = R(F)oT ! and, from part (c), [z, R(FoT')dm, =
| det(T)| [g. R(F) dm,,. We, similarly, prove the same equality with the imagi-
nary parts and, combining, we get the desired equality.

The equality of the two integrals in Theorem 7.18 is nothing but the (linear)
change of variable formula. If we write y = T1(x) or, equivalently, z =
T(y), then the equality reads

£ (@) dmo(w) = | detT)] [ f5) dmaly).
Rn Rn
Thus, the informal rule for the change of differentials is

dmy, (z) = [det(T)|dmn(y).

7.7 Lebesgue-Stieltjes integral.

Let —oo < ag < by < +00. Every monotone f : (ag,by) — R is Borel mea-
surable. This is seen by observing that f~!((a,b]) is an interval, and hence
a Borel set, for every (a,b]. If, now, F' : (ag,bp) — R is another increasing
function and pp is the induced Borel measure, then f satisfies the necessary
measurability condition and the f(aobo) fdup exists provided, as usual, that
either f(ao,bo) ftdur < 400 or f(ao,bo) [ dup < +o0.

The same can, of course, be said when f is continuous.

In particular, if f is continuous or monotone in a (bounded) interval S C
(ao,bo) and it is bounded on S, then it is integrable over S with respect to pp.
We shall prove three classical results about Lebesgue-Stieltjes integrals.

Observe that the four integrals which we get from |, s [ dur, by taking S =
[a,b], [a,b), (a,b] and (a,b), may be different. This is because the f{a} fdup =
flapr({a}) = f(a)(F(at) = F(a—)) and [g, fdup = f(O)(F(b+) — F(b-))
may not be zero.

Proposition 7.11 (Integration by parts) Let F,G : (ag,by) — R be two in-
creasing functions and pp, pe be the induced Lebesque-Stieltjes measures. Then

[ @@+ | P o) = GODFB - G Flat)

for all a,b € (ag,by) with a < b. In this equality we may interchange F with G.
Similar equalities hold for the other types of intervals, provided we use the
appropriate limits of F,G at a,b in the right side of the above equality.

Proof: We introduce a sequence of partitions Ay = {cék), . ,cl(f)} of [a,b] so
that a = cék) < cgk) << cl(f) = b for each k and so that



We also introduce the simple functions

lk lk
9k = Z G(C;k)_‘_)x(c(k) c(k)]’ fk = ZF(CEIC*)l_'_)X(C(k) (M]'
=1 j=1

=15 1%

It is clear that G(a+) < gr < G(b+) and F(a+) < fi < F(b—) for all k.

If, for an arbitrary = € (a,b] we take the interval (c(k) c(k)] containing x

-1
(observe that j = j(k,x)), then gx(x) = G(cg-k)—&—) and fi(z) = F(c§]i)1+). Since
limp 4 oo (c;k) — c;}i)l) — 0, we have that c§k) — x and cyi)l — 2. Therefore,

gr(x) = G(x+),  fi(z) = Flz-)

as k — +oo0.
We apply the Dominated Convergence Theorem to find

I
S G 1) (F(EP+) - Fe, +)) = /( ) g1 (@) dpp(z) — Gla+) dpp ()

j=1 (a,b]

Iy

S F(E )G ) -G +) = oy M@dncle)= | Feo)dna(o)
j=1 a, a,

as k — +oo0.
Adding the two last relations we find

G(b+)F(b+) — G(a+)F(a+) = G(z+) dpr(x) —|—/ F(x=)dug(x).
(a,b] (a,b]

If we want the integrals over (a,b), we have to subtract from the right side
of the equality the quantity f{b} G(z+) dup(x) + f{b} F(z—)dug(z) which is
equal to G(b+)(F(b+) — F(b—)) + F(b—)(G(b+) — G(b—)) = G(b+)F(b+) —
G(b—)F(b—). Then, subtracting the same quantity from the left side of the
equality, this becomes F(b—)G(b—) — F(a+)G(a+). We work in the same way
for all other types of intervals.

The next two results concern the reduction of Lebesgue-Stieltjes integrals
to Lebesgue integrals. This makes calculation of the former more accessible in
many situations.

Proposition 7.12 Assume that F : (ag,by) — R is increasing and has a con-
tinuous derivative on (ag,by). Then

pr(B) = [ F(@)dms(a)

for every Borel set E C (ag,bg) and

/ £(@) dup (z) = / F(@)F' () dmy (x)
(ao,bo)

(@0,b0)
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for every Borel measurable f : (ag,bg) — R or C for which either of the two
integrals exists.

Proof: (i) The assumptions on F' imply that it is continuous and that F’ > 0
on (ag,by). For every [a,b] C (ag,bg) we have, by the Fundamental Theorem of
Calculus for Riemann integrals, that f(a,b] F'(x)dmy(x) = f[a,b] F'(z)dmq(z) =
F(b) — F(a) = F(b+) — F(a+) = pr((a,b]). If we apply this to a strictly
monotone sequence a, | a, we get, by the Monotone Convergence Theorem,
that f(a,b] F'(z)dmy(x) = pur((a,b]) for every (a,b] C (ag,bo).

We now introduce the Borel measure p on (ag,bp) by the formula

u(B) = [ F@)am (o)

for every Borel set E C (ag,bp). Clearly u(#) = 0 and u(E) > 0 for all Borel
E C (ag,bp). The o-additivity of p is an immediate consequence of Theorem
7.13.

Now, from the first paragraph, we have p((a,b]) = pr((a,b]) for every
(a,b] C (ag,bo). Theorem 5.5 implies that y = pp and hence

() = /E F'(z) dma ()

for every Borel set E C (ag, bo).

Taking arbitrary linear combinations of characteristic functions, we find that
San o) @) dr(z) = [, 40 #(@)F'(x) dmi(x) for all Borel measurable simple
functions ¢ : (ag,bg) — [0,+00). Now, applying the Monotone Convergence
Theorem to an appropriate increasing sequence of simple functions, we get

/ £() dur(z) = / F(@)F' (@) dmy (2)
(ao,bo)

(ao,bo)
for every Borel measurable f : (ag,by) — [0, +0c0]. The proof is easily concluded
for any f : (ag,bp) — R, by taking its positive and negative parts, and then
for any f : (ap,bp) — C, by taking its real and imaginary parts (and paying
attention to the set where f = 00).

Proposition 7.13 Assume that F : (ag,by) — R is increasing and G : (a,b) —
R has a bounded, continuous derivative on (a,b), where ag < a < b < by. Then,

| 6@ dur(@) = Go-)F0-) - Glat)Flas) - [ Fla=)6'x) dm(o)
(a,b) (a,b)

= G(b—)F(b—) — G(a+)F(a+) — /( ) F(z+)G (z) dmy ().

Proof: (A) By the assumptions on G we have that it is continuous on (a,b) and
that the limits G(b—) and G(a+) exist and they are numbers. We then extend
G as G(b—) on [b,bg) and as G(a+) on (ag,a] and G becomes continuous on
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(an,bp). We use the same partitions Ay as in the proof of Proposition 7.11 and
the same simple functions

We have again that |gix| < M where M = sup{|G(x)||z € [a,b]} and that
gx(z) — G(z+) = G(x) for every = € (a,b]. By the Dominated Convergence
Theorem,

Uy
Ck Ck-: — Ck-) = X xXr) — X X
D GUFH ~ Flef 1) /(a,b] sy dur(@) ~ [ G durtz)

as k — +oo.

By the mean value theorem, for every j with j =1,...,1;, we have
G(cf) = G(cf_y) = G'(€)(cf — ¢j_1)

for some fjl? € (c;?_hc;?). Hence
Ik

Y F(GH)(G(e) = G(f_y) = D F(_ )G (€))(e — ¢y)
j=1

= or(x) dmq(x),
(a,b)
where we set ¢p, = Z;I‘Zl F(C?—1+)G/(£f)x(6§71,6?]'
We have that ¢y (z) — F(z—)G'(x) for every z € (a,b) and that |¢x| < K on
(a,b) for some K which does not depend on k. By the Dominated Convergence
Theorem, [, ) éx(x)dmai(z) — [, ) F(2—)G'(x) dmi(z). We combine to get

GO)F(b+) — G(a)F(at) = | G(z)dur(z) + / F(a—)G' (z) dm ().
(a,b] (a,b)

From both sides we subtract f{b} G(z)dur(z) = G(b)(F(b+) — F(b—)) to find

Gb)F(b—) — G(a)F(a+) = G(z)dur(z) + / F(z—)G'(z) dmy(z),
(a,b) (a,b)

which is the first equality in the statement of the proposition. The second
equality is proved in a similar way.
(B) There is a second proof making no use of partitions.

Assume first that G is also increasing in (a,b). Then its extension as G(a+)
on (ag,a] and as G(b—) on [b, by) is increasing in (ag, bp). We apply Proposition
7.11 to get

/( | Gy (@) = GO F(0-) = Glat)Flat) - / Fla—) duc(a),

(a,b)
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which, by Proposition 7.12; becomes the desired

/ G(w) dup(z) = G(b—)F(b=) — Gla+)F(a+) — / F(o—)G' (z) dm ().
(a,b) (a,b)

If G is not increasing, we take an arbitrary zo € (a,b) and write G(z) =
G(zo) +f(w0’w) G'(t) dm (t) for every x € (a,b). Now, (G')T and (G')~ are non-
negative, continuous, bounded functions on (a, b) and we can write G = G; —G»
on (a,b), where

Gi(0) = Glao) + [ (@) Odmi(t),  Gale) = [ (@) (O dm(0)
(zo,) (zo,)

for all € (a,b). By the continuity of (G’')" and (G’)~ and the Fundamental

Theorem of Calculus, we have that G} = (G/)T > 0 and G, = (G')” > 0

on (a,b). Hence, Gy and Gs are both increasing with bounded, continuous

derivative on (a,b) and from the previous paragraph we have

" Gi(z)dup(z) = G;(b—)F(b—)—G;(a+)F(a+)— ) F(x—)G(z) dm(z)

for i = 1,2. We subtract the two equalities and prove the desired equality.

It is worth keeping in mind the fact, which is included in the second proof
of Proposition 7.13, that an arbitrary G with a continuous, bounded derivative
on an interval (a,b) can be decomposed as a difference, G = G; — G4, of two
increasing functions with a continuous, bounded derivative on (a,b). We shall
generalise it later in the context of functions of bounded variation.

7.8 Reduction to integrals over R.
Let (X,X, 1) be a measure space.

Definition 7.10 Let f : X — [0,400] be measurable. Then the function Ay :
[0, 4+00) — [0, +00], defined by

Ap(t) = p({z € X |t < f(2)}),
1s called the distribution function of f.

Some properties of Ay are easy to prove. It is obvious that A is non-negative
and decreasing on [0,400). Since {z € X |t, < f(z)} T{zr € X |t < f(z)} for
every t, | t, we see that Ay is continuous from the right on [0, +00).

Hence, there exists some ¢y € [0, +00] with the property that A; is 400 on
the interval [0, t) (which may be empty) and Ay is finite in the interval (o, +00)
(which may be empty).
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Proposition 7.14 Let f : X — [0,4+00] be measurable and G : R — R be
increasing with G(0—) = 0. Then

|t () = /{OM A () dug(t).

Moreover, if G has continuous derivative on (0,+00), then

/X G(f(x)) du(z) = /( L MG @ dm () 42,0604,

In particular,

/ f(a) du(z) = / Ap(t) dima (2).
X (0,+00)

Proof: (a) Let ¢ = Z;nzl k;XE; be a non-negative measurable simple function
on X with its standard representation, where we omit the value 0. Rearrange
so that 0 < k1 < +++ < Ky, and then

(Er) + p(E) + -+ u(Ey), if0<t <k

w(Es) + -+ p(Em), if k1 <t < kKo
Ag(t) =4 -
w(En), if K1 <t < K
0, ifky <t
Then

/[O+ KO0 dat) = (4B + p(E2) 4+ plEn)) (G01-) = G(0-))

+(u(B2) + - 4 w(Em)) (G(k2—) — G(k1-))

+1(Em) (Gkim—) = G(km—1-))
= G(r1—)u(E1) + Gr2—)p(B2) + - + Gk —)(Epn)

- [ e

because G(¢(x)—) is a simple function taking value G(k;—) on each E; and
value G(0—) =0on (F1U---UE,;)°.

(b) Take arbitrary measurable f : X — [0,+00] and any increasing sequence
(¢n) of non-negative measurable simple ¢,, : X — [0,4+00) so that ¢, T f on
X. Then 0 < G(¢n(x)—) T G(f(z)—) for every x € X and, by the Monotone
Convergence Theorem,

/X G (@) =) du(z) — /X G(f(x)-) du(x).

Since {z € X |t < ¢n(x)} T {z € X |t < f(x)}, we have that Ay, (t) T Af(¢)
for every t € [0,+00). Again by the Monotone Convergence Theorem,

/[0 )\4)71 (t) dug (t) — )\f (t) dug(t).

s+00) [0,400)
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By the result of (a), we get [, G(f(z)—)du(z) = f[O,—i—oo) Af(t) due(t).
Proposition 7.12 implies the second equality of the statement and the special
case G(t) =t implies the last equality.

Proposition 7.15 Let u(X) < +o00 and f : X — [0,400] be measurable. We
define F': R — R by

Fr(t)=p({z e X | f(z) <t}) = {6‘7(X) = (1), ggfot:ffﬁ

Then F is increasing and continuous from the right and, for every increasing
G:R — R with G(0—) = 0, we have

/ G(f(x)-) du(z) = / G(t—) dpr, (1) + G(+o0)u(f ™ (+00)).
X [0,4+00)

Proof: 1t is obvious that F is increasing. If ¢, | ¢, then {z € X | f(z) <t,} |
{z € X| f(z) < t}. By the continuity of p from above, we get Fy(t,) | Fy(t)
and Fy is continuous from the right.

We take any n € N and apply Proposition 7.11 to find

G(t—) dur, (t) = G(nt)Fy(n) — / Fy(t) dpc(®)

[0,n] [0,n]

:/[0 () = Fy(0) (D)

The left side is = f[07+oo) G(t=)x0,n)(t) dpr, (t) 1 f[07+oo) G(t—)dpr,(t), by
the Monotone Convergence Theorem.

The right side is = f[O,-l—oo) p{z € X|t < f(z) < n})xpnt)dpc(t) 1
f[07+oo) p{r € X |t < f(z) < +o00})duc(t), again by the Monotone Conver-
gence Theorem.

Thus, [y, ) G(t=) diir, () = fig ooy il{a € Xt < f(2) < +50}) duc(t)
and, adding to both sides the quantity G(+oo)u({zx € X | f(x) = +00}) we find

/ G(t=) dpug, (1) +G(+00)u({e € X | f(a) = +00}) = / Ar(8) dpic (2)
[0,4+00) [0,400)

and the equality of the statement is an implication of Proposition 7.14.

7.9 Exercises.

1. The graph and the area under the graph of a function.
Let f: R™ — [0, +00] be Lebesgue measurable. If

Ap ={(#1, .. 2, 2 g1) |0 S @y < f(21,...,20)} SR
Gy ={(21,. s, Tny1) | Tns1 = flz1,...,20)} C R,

125



10.

11.

prove that Ay, Gy € L,,41 and

Mpy1(Af) = - fdmy, Mn1(Gyf) = 0.

An equivalent definition of the integral.

Let (X, %, 1) be a measure space and f : X — [0, +00] be measurable. Let
A ={FEi,...,E}, where |l € N and the non-empty sets Ey,...,E € &
are pairwise disjoint and cover X. Such A are called Y-partitions of X.
Define X(f,A) = 2221 m;p(E;), where m; = inf{f(z) |z € E;}. Prove
that

/ fdu=sup{Z(f,A)| A is a X-partition of X}.
X

. If (X, 3, 1) is a measure space, f,g,h : X — R are measurable, g, h are

integrable and g < f < h a.e. on X, prove that f is also integrable.

The Uniform Convergence Theorem.

Let (X,X, 1) be a measure space, all f,, : X — R or C be integrable and
let f, — f uniformly on X. If pu(X) < +oo, prove that f is integrable

and that [ fndp — [ fdp.

The Bounded Convergence Theorem.

Let (X, X, 1) be a measure space and f, f,, : X — R or C be measurable.
If u(X) < 400 and there is M < 400 so that |f,| < M a.e. on X and
fn — fae on X, prove that [ fndp— [ fdp.

Let (X, X, 1) be a measure space, f, f, : X — R or C be measurable and
g+ X — [0,400] be integrable. If |f,| < g a.e. on X for every n and
fn — [ ae. on X, prove that [ |f, — f|du — 0.

Let (X, X, ) be a measure space, f, f, : X — [0, +00] be measurable with
fn < fae onX and f, — fae on X. Prove that [, fndu— [y fdp.

Let (X, 3, 1) be a measure space, f, f, : X — [0, +00] be measurable and
fn — fae. on X. If there is M < +o0 so that fX fn dp < M for infinitely
many n’s, prove that f is integrable.

Generalisation of the Lemma of Fatou.

Assume (X, ¥, i) is a measure space, f, g, f, : X — R are measurable and
fX g du < +o00. If g < f,, a.e. on X and f = liminf, ;. f, a.e. on X,
prove that [y fdp < liminf, | [y fndp.

Let (X, %, ) be a measure space, f, f, : X — [0, +00] be measurable with
Jnl fae on X and [, fidu < 4oo. Prove that [ fudu | [y fdp.

Use either the Lemma of Fatou or the Series Theorem 7.2 to prove the
Monotone Convergence Theorem.
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12.

13.

14.

15.

16.

17.

Generalisation of the Dominated Convergence Theorem.

Let (X, %, ) be a measure space and f,f, : X — Ror C, g,g, : X —
[0, +0¢] be measurable. If |f,| < gn a.e. on X, if [} gndpu — [ gdp <
+oo and if f, — f a.e. on X and g, — g a.e. on X, prove that fX fndu —
Jx fdu.

Assume (X, p) is a measure space, all f, f,, : X — [0, +00] are mea-
surable, f, — f a.e. on X and [y f,dp — [y fdp < +oo. Prove that
Jufndp— [, fdp for every A e 3.

Let (X,%, 1) be a measure space, f,f, : X — R or C be integrable
and f, — f a.e. on X. Prove that fX |fn — fldu — 0 if and only if

Jx [faldp — [ |f]dp.

Improper Integrals.

Let f: [a,b) — R, where —0o < a < b < 400. If f is Riemann integrable
over [a,c] for every ¢ € (a,b) and the limit lim._,— [ f(z)dz exists in
R, we say that the improper integral of f over [a,b) exists and we
define it as

—b c
f(x)de = lirl? f(z)de.

We have a similar terminology and definition for f;; f(x)dzx, the im-
proper integral of f over (a,b].
(i) Let f : [a,b) — [0,+00) be Riemann integrable over [a,c]| for every
¢ € (a,b). Prove that the Lebesgue integral f: f(z)dx and the improper
integral f:b f(z) dz both exist and they are equal.
(ii) Let f : [a,b) — R be Riemann integrable over [a, ¢] for every ¢ € (a, b).
Prove that, if the Lebesgue integral f: f(x)dx exists, then fa_)b f(x)dx
also exists and the two integrals are equal.
(iii) Prove that the converse of (ii) is not true in general: look at the fourth
function in exercise 7.9.17.
(iv) If fa_}b |f(z)|dx < 400 (we say that the improper integral is ab-
solutely convergent), prove that the f;b f(x)dz exists and is a real
number (we say that the improper integral is convergent.)

Using improper integrals (see exercise 7.9.15), find the Lebesgue integral
fjoooo f(z) dz, where f(x) is any of the following:

T e @), T X

1 +$27 ) xQX[O,+w) oy |.13‘7 \/HX[_LI] .

Using improper integrals (see exercise 7.9.15), find the Lebesgue integral
fj;o f(z) dx, where f(z) is any of the following:

too 1 too (_1)n+1
Z 27X(n,n+1] (35)7 Z TX(n,nJrl] (95),
n=1 n=1
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18.

19.
20.

21.

22.

23.

24.

+00 n+1

+
1
Z ﬁX(n,n«%l] (Z‘), Z — X(n,n+1] ($)

n=1

Apply the Lemma of Fatou for Lebesgue measure on R and the sequences:
, . o T
Xnn+1) (%), X(n,400)(T); nxo,%)(x), 1+ s1gn(sm (2 %))

If f is Lebesgue integrable on [—1, 1], prove lim, ;o f_ll 2" f(x)dx = 0.

The discontinuous factor.
Prove that
if 0 < a < +oo,

1 +oo t 07
thm 7/ 171522dm: %, ifa:(),
Tt Ja Ttz 1, if —co<a<0.

Prove that
" n I
i [ (14 2) e~ {7 1<
n—+oo J n +oo, ifa<l.
Let (X,X%,u) be a measure space and f : X — [0,400] be measurable

with 0 < ¢ = [ fdu < +o0. Prove that
400, f0<a<l,

HETOOTL/XIOg(1+(£)Q)d“:{C7 7 %fa:l,

0, if 1 <a<+o.

Consider QN [0,1] = {ry1,r2,...} and a sequence (a,,) of real numbers so
that 37> |a,| < +0o. Prove that the series

Z —_—
converges absolutely for mj-a.e. z € [0, 1].

The measure induced by a function.

Let (X,X, u) be a measure space and f : X — [0, +00] be measurable.
Define v : ¥ — [0, +o0] by

oE) = [ fau

for all E € ¥. Prove that v is a measure on (X,3) which is called the
measure induced by f. Prove that:

i) [y gdv = [, gf du for every measurable g : X — [0, +oc],

(i) if g : X — R is measurable, then [, gdv exists if and only if [ gf du
exists and in such a case the equality of (i) is true,

(iii) if g : X — C is measurable, then g is integrable with respect to v
if and only if gf is integrable with respect to p and in such a case the
equality of (i) is true.
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25.

26.

27.

28.

29.

30.

31.

Let (X,3, ) be a measure space and f : X — R or C be integrable.
Prove that for every € > 0 there is an F € ¥ with u(E) < +oco0 and

Jpe Ifldp <e.

Absolute continuity of the integral of f.

Let (X,3, 1) be a measure space and f : X — R or C be integrable.
Prove that for every e > 0 there is § > 0 so that: | [}, fdu| < € for all
E € ¥ with u(E) < 0.

(Hint: One may prove it first for simple functions and then use the Ap-
proximation Theorem 7.12.)

Let f: R — R or C be Lebesgue integrable. Prove F(x f f@t)dtis
a continuous function of z on R.

Continuity of translations.

Assume that f: R™ — R or C is Lebesgue integrable. Prove that

plim 1=~ (@)l dx =0,

(Hint: Prove it first for continuous functions which are 0 outside a bounded
set and then use the Approximation Theorem 7.16.)

The Riemann-Lebesgue Lemma.

Assume that f : R — R or C is Lebesgue integrable. Prove that

+oo +oo
lim f(t) cos(xt)dt = lim f(t)sin(xt)dt =0

T—+00 T—+00

— 00 — 0o

in the two following ways:

Prove the limits when f is the characteristic function of any interval and
then use an approximation theorem.

Prove that | [7°° f(t) cos(at) dt| = 3| [T22(f(t — T) — f(t)) cos(at) dt| <

x

%fjof |f(t — %) — f(t)| dt and then use the result of exercise 7.9.28.

Let @ C R™ be a closed interval and zg € Q. If f : @ — R is Riemann
integrable over @ and g : @ — R coincides with f on @\ {z¢}, prove that
g is also Riemann integrable over @ and that (R.,) fQ g=(Ry) fQ f

Let @ C R” be a closed interval, A € R and f,g9 : @ — R be Riemann
integrable over ). Prove that f+ g, Af and fg are all Riemann integrable
over ( and

(R)/Q(f+g /f+ / (R)/AfA /f
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32.

33.

34.

35.

36.

Let Q C R™ be a closed interval.

(i) If the bounded functions f, fi : @ — R are all Riemann integrable over
Q and 0 < fi 1 f on Q, prove that (R,,) fQ fr — (Rn) fQ f

(ii) Find bounded functions f, fi : @ — R so that 0 < fx T f on @ and so
that all f; are Riemann integrable over @, but f is not Riemann integrable
over Q.

Continuity of an integral as a function of a parameter.

Let (X, 3, u) be a measure space and f : X x (a,b) - Rand g: X —
[0, 4+00] be such that

(i) g is integrable and, for every t € (a,b), f(-,t) is measurable,

(ii) for a.e. x € X, f(z,t) is continuous as a function of ¢ on (a,b),

(iii) for every t € (a b), \f(x t) <g(z) ae zeX.

Prove that F(t) = [y f(z,t)du(z) is continuous as a function of ¢ on
(a,b).

Differentiability of an integral as a function of a parameter.

Let (X,%, ) be a measure space and f : X X (a,b) - Rand g : X —
[0, +00] be such that

(i) g is integrable and, for every ¢ € (a,b), f(-,t) is measurable,

(ii) for at least one ty € (a,b), f(-,to) is integrable,

(iii) for a.e. x € X, f(z,t) is differentiable as a function of ¢ on (a,b) and
|3—{(x,t)| < g(x) for every t € (a,b). Thus, %{ A x (a,b) — R for some
Ae¥ with (X \ A4)=0.

Prove that F(t) = [ f(z,t)du(z) is differentiable as a function of ¢ on
(a,b) and that

%(t):/ Z{(x t) du(x), a<t<b.

The integral of Gauss.
Consider the functions f,h : [0,400) — R defined by

1 xT L1 2 1 e—%IQ(tQ—}-l)

(i) Using Exercise 7.9.34, prove that f'(x) 4+ h'(x) = 0 for every = €
(0,+00) and, hence, that f(x)+ h(z) = J for every x € [0, 4+00).
(ii) Prove that

+DO 1.2
/ e 3t dt = V2.
—00

The distribution (or measure) of Gauss.
Consider the function g : R — R defined by



37.

38.

(i) Prove that g is continuous, strictly increasing, with g(—oo) = 0 and

g(+00) = 1 and with continuous derivative ¢'(x) = \/%e_%ﬁ, z € R.

(ii) The Lebesgue-Stieltjes measure p, induced by g is called the distri-
bution or the measure of Gauss. Prove that uy,(R) = 1, that

1 1,
“g(E):\/TTT/Ee 2 dx

for every Borel set in R and that

/R J(@) dug(z) = \/% /:o fz)e " d

for every Borel measurable f : R — R or C for which either of the two
integrals exists.

(i) Using Exercise 7.9.34, prove that the function F' : (0, +00) — R defined

by
+oo ;
F(t) = / e—te 20T g
0 X
is differentiable on (0, +00) and that 4 (¢) = —H% for every ¢ > 0. Find

the lim;_, o, F(t) and conclude that F(t) = arctan 1 for every t > 0.
(i) Prove that the function 22 is not Lebesgue integrable over (0, +00).

(iii) Prove that the improper integral f0_>+°° % dx exists.
(iv) Justify the equality lim; o4 F(t) = fo_’+°° SInT (o,
(

v) Conclude that
— 400 _:
/ sinx do — z.
0 x 2

—doo 0, if0<a<+oc0
1 + t ) )
lim 7/ Sl“”)dx:{;, if a = 0,

a 1, if —co<a<0.

(vi) Prove that

The gamma-function.

Let Hi = {z = x+1iy € C|z > 0} and consider the functionI': H; — C
defined by

“+oo
I'(z) = / t*"tet dt.
0

This is called the gamma-function.
(i) Prove that this Lebesgue integral exists and is finite for every z € H, .
(ii) Using Exercise 7.9.34, prove that

or or

%(2) = —Z%(z)

for every z € Hy. This means that I is holomorphic in H,.
(iii) Prove that I'(n) = (n — 1)! for every n € N.
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39.

40.

41.

The invariance of Lebesgue integral and of Lebesgue measure under isome-
tries.

Let T : R™ — R"™ be an isometric linear transformation. This means
that |T'(z) — T'(y)| = |z — y| for every x,y € R™ or, equivalently, that
TT* = T*T = I, where T* is the adjoint of T" and I is the identity
transformation. Prove that

foT tdm, = fdm,
R" R"
for every Lebesgue measurable f : R® — R or C, provided that at least

one of the two integrals exists. (See also exercise 4.6.2.)

(i) Consider the Cantor set C and the Iy = [0,1], 11, I2,... which were
used for its construction. Prove that the 2"~! subintervals of I,,_1 \ I,
n € N, can be described as

(al I S . )
3 377.71 3n7 3 377.71 3n ’
where each of aq,...,a,_1 takes the values 0 and 2.

(ii) Let f be the Cantor function, which was introduced in exercise 4.6.10,
extended as 0 in (—00,0) and as 1 in (1,+00). Prove that f is constant

_ax Ap—1 1

in the above subinterval (% + - -- + gz:i + 3%, G+t gzj + 3%)
(iii) If G : (0,1) — R is another function with bounded derivative in (0, 1),
prove that

+oo
Gy =c) -y Y (et )

(0,1) n=lai,...,anp—-1=0,2
ax an-1 2 ap ap-1 1
. G(f 7)_G(f 7>)
(@(F++5+5 3 T TR T

(iv) In particular, f(o,l) wdps(z) =1

(v) Prove that

for every t € R.

Let F,G : R — R be increasing and assume that F'G is also increasing.
Prove that

nra(E) = /E G(at) dyup () + /E F(a—) dpc(z)
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42.

43.

44.

45.

46.

47.

48.

for every Borel set £ C R and

/f ) dpra(a /f Gla+) dur (s /f ~) dyg(z)

for every Borel measurable f : R — R or C for which at least two of the
three integrals exist.

If F: R — R is increasing and continuous and f: R — [0, +0o0] is Borel

measurable, prove that [ f(F(z))dpr(z) = [ ;?((4—03) t) dt.

Show, by example, that this may not be true if F' is not continuous.
Riemann’s criterion for convergence of a series.

Assume F : R — [0,+00) is increasing and g : (0,+00) — [0, +00) is
decreasing. Let a, > 0 for all n and §{n|a, > g(xz} < F(z) for all
x € (0,400) and f(01+oo) g(x) dup(z) < +o00. Prove Y ' a, < +oc.

Mean values.

Let (X, %, 1) be a measure space, f : X — R or C be integrable and F
be a closed subset of R or C. If ﬁ Ji fdu € F for every E € ¥ with

0 < u(E), prove that f(x) € F for a.e. x € X.

Let (X, X, u) be a measure space and E € ¥ have o-finite measure. Prove
that there is an f : X — [0,400] with [, fdu < 400 and f(z) > 0 for
every x € F.

Let (X,X%, 1) be a measure space and f : X — [0,400] be measurable.
Prove that

722%0 2" /f )dp(z) <Y 2"Ap(2")

neZz neZ

and, hence, that f is integrable if and only if the >~ _,2"A;(2") is finite.

neZ
Equidistributed functions.

Let (X, 3, i) be a measure space and f,g : X — [0, +00] be measurable.
The f, g are called equidistributed if \;(¢) = A\, (¢) for every ¢ € [0, +00).

Prove that, if f, g are equidistributed, then

| @ in) = [ 9@ duto)

for every p € (0, +00).

Let (X,3, u) be a measure space and ¢,1 : X — [0,400) be two mea-

surable simple functions and let ¢ = 377" | #jxp; and ¢ = Y711, NixF, be

their standard representations so that 0 < k1 < -+ < Ky, and 0 < Ay <
- < An, where we omit the possible value 0.
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49.

50.

51.

If ¢ and ® are integrable, prove that they are equidistributed (exercise
7.9.47) if and only if m = n, kK1 = Ap,...,6m = Ay and u(Ey) =

The inequality of Chebychev.

Let (X,X, ) be a measure space and f : X — [0,400] be measurable.
Prove that

plle € X[t < F@h =20 < 1 [ f@)duto)

for every t € (0,400). Prove also that, if f is integrable, then

lim t)\f(t) =0.

t——+oo

Let (X,X, ) be a measure space, f : X — [0,+00] be measurable and
0 < p < +00. Prove that

+oo
Pg T) = p—1 .
/Xf()du() p/o A (t) dt

If, also, f < 400 a.e. on X, prove that

/X £7(@) dp) = /[Moo)  dur, (1),

where Fy is defined in Proposition 7.15.

The Jordan content of sets in R™.

If £ C R™ is bounded we define its inner Jordan content
c(F) = sup { Zvoln(Rj) |m € N, Ry, ..., Ry, pairwise disjoint
j=1

open intervals with U;-”Zl R; C E}

and its outer Jordan content

m

) (E) = inf { Z vol,(R;)|m € N, Ry,. .., Ry, open intervals
j=1
with U7, R; 2 B},

(i) Prove that the values of cl )(E) and ¢\ (E) remain the same if in the
above definitions we use closed intervals instead of open intervals.
(ii) Prove that cg«f)(E) < csLo)(E) for every bounded E C R".
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52.

The bounded E is called a Jordan set if ¢\ (E) = ) (E), and the value
n(E) = ) (B) = ()

is called the Jordan content of E.

(iii) If E is bounded and ) (E) =0, prove that F is a Jordan set.

(iv) Prove that all intervals S are Jordan sets and ¢, (S) = vol,(S).

(v) If E is bounded, prove that it is a Jordan set if and only if for every
€ > 0 there exist pairwise disjoint open intervals Ri,..., R, and open
intervals Ry, ..., R} so that UL R; C E C UJ_, R} and

k m
Z voly, (R}) — Z vol,(Rj) < e.
i=1 j=1

(vi) If E' is bounded, prove that E is a Jordan set if and only if cgf)(aE) =
0.

(vii) Prove that the collection of bounded Jordan sets is closed under finite
unions and set-theoretic differences. Moreover, if F1,..., E; are pairwise
disjoint Jordan sets, prove that

l
cn(BE) = cn(E)).
j=1

(viii) Prove that if the bounded set E is closed, then m,(E) = 0 implies
cn(E) = 0. If E is not closed, then this result may not be true. For
example, if E = QN [0,1] C R, then my(E) =0, but ¢\’ (E) =0 < 1=
cgo)(E) and, hence, F is not a Jordan set. (See exercise 4.6.6.)
(ix) If the bounded set E is a Jordan set, prove that it is a Lebesgue set
and

mu(E) = cn(E).
(x) Let E be bounded and take any closed interval @ so that F C Q.
Prove that F is a Jordan set if and only if yg is Riemann integrable over
Q@ and that, in this case,

e(E) = (Ry) /Q XE-

(xi) Let @ be a closed interval, f,g: @ — R be bounded and £ C @ be a
Jordan set with ¢,(F) = 0. If f is Riemann integrable over Q and f =g
on @\ E, prove that g is also Riemann integrable over @) and that

(Rn) /Q f=(Rn) /Q 0.

Lebesgue’s characterisation of Riemann integrable functions.

Let @ C R”™ be a closed interval and f : @ — R be bounded. Prove that
f is Riemann integrable if and only if {x € Q| f is discontinuous at x} is
a null set.
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Chapter 8

Product measures

8.1 Product o-algebra.

If I is a general set of indices, the elements of the cartesian product [],.; X;
are all functions = : I — U;erX; with the property: z(i) € X; for every i € I. It
is customary to use the notation x;, instead of z(i), for the value of x at ¢ € I
and, accordingly, to use the notation (z;);e; for the element x € [],o; X;.

If T is a finite set, I = {1,...,n}, we use the traditional notation x =
(#1,...,2,) for the element z = (z;);e; and we use the notation []7 ; X; or
X1 x oo x Xy, for [[,c; Xs. And if I is countable, say I = N = {1,2,...},

we write © = (21, 2,...) for the element = = (z;);c; and we write ]_[;;Of X, or
X1 X X2 X -+« for HiGIXi'

Definition 8.1 If I is a set of indices, then, for every j € I, the function
7 [Lier Xi — X defined by
mj(z) = z;
for all x = (x;)icr € [[;c; Xi, is called the j-th projection of [[,.; X; or the
projection of [[,.; X; onto its j-th component X;.
In case I ={1,...,n} or I = N, the formula of the j-th projection is
mj(x) = x;

for all z = (21,...,2,) € X1 X - x X,, = H?Zl X, or, respectively, z =
($1,.’L‘2,...)€X1 X Xo X o= J;?Xz
Clearly, the inverse image 7, (A;) = {z = (2;)ier € [L;c; Xi|z; € A;} of
an arbitrary A; C X is the cartesian product
_ X;, ifi#j
gy : . i
it (4) =[], where YZ{AJ-, ifi=j
i€l
In particular, if I = {1,...,n}, then

ﬂ-j_l(Aj):XlX”.XXj_lXAjXXj'f‘lX"'XXn
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and, if 7 = N, then

ijl(Aj):Xlx...ijflxijXjJrlX....

Definition 8.2 If (X;,3;) is a measurable space for every i € I, we consider
the o-algebra of subsets of the cartesian product [, X;

called the product o-algebra of ¥; (i € I).

In particular, ®}_,%; is generated by the collection of all sets of the form
Xy XX X1 xAj x Xjpq x - x Xy, where 1 < j <nandA4; €.

Similarly, ®;;°1°ZZ- is generated by the collection of all sets of the form X; x
o x Xjo1 x Ay x Xj4q X -+, where j € N and A4, € ¥;.

Proposition 8.1 Let (X;,¥;) be a measurable space for each i € I. Then
®ierX; is the smallest o-algebra & of subsets of [[,.; X; for which all projections
7 [Lier Xi = X are (£, %;)-measurable.

icl

Proof: For every j and every A; € ¥, we have that w{l(Aj) € Rierx; and,
hence, every 7; is (®;e13;, X;)-measurable.

Now, let ¥ be a o-algebra of subsets of [],.; X; for which all projections
7 [Lier Xi — X are (¥, X;)-measurable. Then for every j and every 4; € 3;
we have that w{l(Aj) € X. This implies that {W;l(Aj) ljel,A; € ¥} C X
and, hence, ®;cr>; C 3.

Proposition 8.2 Let (X;,%;) be a measurable space for each i € 1. If &; is a
collection of subsets of X; with ¥; = %(&;) for all i € I, then ®;cr%; = X(E),
where

E={r; (Ej)|jel,E;€&}

Proof: Since € C {m; '(4;)]j € I,Aj € 5;} C ®er%, it is immediate that
3(€) C ®icrX;.

We, now, fix j € I and consider the m; : [[,c; Xi — X;. We have that
7Tj_1(Ej) € &€ C X(€) for every E; € ;. Proposition 6.1 implies that m; is
(3(€), 3;)-measurable and, since j is arbitrary, Proposition 8.1 implies that
®Ric1X; € X(E).

Proposition 8.3 Let (X;,Y;) be measurable spaces. If &; is a collection of

subsets of X; so that ; = X(&;) for every i € I, then ®;c1%; = X(E), where

E= {H E; | E; # X; for at most countably many i € I and E; € & if E; # X;}.
el

Proof: We observe that w]l(Ej) € & for every j € I and every E; € & and,
hence, £ C £ C %(€). This implies X(E) C %(E).
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Now take any [[..; Bi € & We set {i1,ia,...} = {i € I|E; # X;} and

observe that

iel

[1E =nixm (Ei) € 3(E).

iel
Thus, £ C ¥(£) and, hence, $(£) C B(&). Proposition 8.2 finishes the proof.

In particular, ®] ,3; is generated by the collection of all cartesian products
of the form Iy x --- x E,, where E; € §; forall j =1,...,n.

Also, ®%; is generated by the collection of all cartesian products of the
form Ey x Ey x ---, where E; € &; for all j € N.

Example
If we consider R"™ = [\, R and, for each copy of R, we take the collection of
all open-closed 1-dimensional intervals as a generator of Br, then Proposition
8.3 implies that the collection of all open-closed n-dimensional intervals is a gen-
erator of ®]_;Br. But we already know that the same collection is a generator
of Brn. Therefore,

Brr» = ®j_,Br.-

This can be generalised. If nj +---+mn, = n, we formally identify the typical
element (z1,...,2,) € R™ with

(({El, e 7xn1)u ey (xn1+~~-+nk_1+17 e 7mn1+---+nk>)7

i.e. with the typical element of H?:l R™. We thus identify

k
R"=[[R™.
j=1

Now, ®§:1BRn,- is generated by the collection of all products Hle Aj, where
each A; is an nj-dimensional open-closed interval. By the above identification,
H§:1 A; is the typical n-dimensional open-closed interval and, hence, ®§:13Rn,-
is generated by the collection of all open-closed intervals in R™. Therefore,

k
BR" = ®j:1Ban .

8.2 Product measure.

In this section we shall limit ourselves to cartesian products of finitely many
spaces. We fix the measure spaces (X1,%1, 1), .-, (Xn, XZn, tn) and the mea-
surable space ([]7_; X;, ®7_,%;).

From Proposition 8.3 and the paragraph after it, we know that ®7_,%; is
generated by the collection £ of all sets of the form H?zl Aj, where A; € ¥; for

all j. Observe that [];_, X; belongs to € and also ) = [T}—, 0 belongs to E.
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The elements of £ play the same role that open-closed intervals play for the
introduction of Lebesgue measure on R™. We agree to call these sets measur-
able intervals in H;’:l X, a term which will be justified by Theorem 8.3, and

denote them by
R=]]A4;
j=1

Proposition 8.4 Let (X;,%;) be a measurable space for every j = 1,...,n.
The collection

A= {él U---URn, |m e N, Ri,..., R, pairwise disjoint elements of g}
is an algebra of subsets of H;LZI X;.

Proof: If R = [[j-, Aj and R = [[j-, B;j are elements of £, then RN R =
[1j-,(A; N B;) is an element of €.

Moreover, if R = H?:l Aj is an element of &, then

R°= (A x Ay x -+ x Ap) U

U(XyxXgx--xX, 1 xAY)

is a disjoint union of elements of f:', i.e. an element of A.

Now, if Ry U---UR,, and ]:2'1 U---u 1’%;€ are any two elements of A, then
(R U+~ URp) N (Ry U UR}) = Uicjcmicick(R; N RY), is, by the result
of the first paragraph, also an element of .A. Hence, A is closed under finite
intersections. Also, if Ry U---U R,, is an element of A, then (]:21 u---u ]:Zm)c =
Rf n---N an is, by the result of the second paragraph, a finite intersection of
elements of A and, hence, an element of A.

Therefore, A is closed under finite intersections and under complements.

This implies that it is an algebra of subsets of H?Zl X;.

For each R = H;—;l Aj € &, we define the quantity
T(R) = [ mi(45),
j=1

which plays the role of volume of the measurable interval R.

Definition 8.3 Let (X;,X;, u;) be a measure space for every j =1,...,n. For
every E C H;'L:1 X, we define

+o0
w*(F) = inf { ZT(RL) |R; € € for alli and E C Uj':"lol-:il}

i=1
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Theorem 3.2 implies that the function p* : P(H?Zl X;) — [0,+00] is an
outer measure on [[7_, X;.

Proposition 8.5 Let (X;,%;,1;) be a measure space for every j = 1,...,n
and R R; be measurable intervals for every i € N.

(i) If R C UL Ry, then 7(R) < 3075 7(Ri).

(i) If R = U+°°R and all R; are pairwise disjoint, then T(R) = ZZ 1 T(R R;).

Proof: (i) Let R = [T}, A; and R; = Il Agl), where Aj,Ajz € X, for every
1€ Nand j with1<j <n.
From [[7_, A; C Uy [T- A] , we get that

HXAJ'(I]) *XH" Aj(:r17"'7zn)
j=1 =
—+oo +oo n
< Z X[T7, 4 (21, .. Z H X4 (z5)
=1 g=1d =1 j5=1 /
for every x7 € X1,...,2, € X,. Integrating over X; with respect to u1, we find
n +oo ) n
1(AD T s () < 37 i (A7) T xpo0 ()
j=2 i=1 j=2 7
for every x5 € Xo,...,x, € X,,. Integrating over X5 with respect to us, we get
n
D4 [T xa ) < 5 (A e HxAm (z;)
j=3 =1
for every z3 € Xs,...,z, € X,,. We continue until we have integrated all
variables.

(ii) We use equalities everywhere in the above calculations.

The next result justifies the term measurable interval for each R € .

Theorem 8.1 Let (X;, %, pi) be a measure space for everyi=1,...,n and pu*
the outer measure of Definition 8.5. Every measurable interval R = H?zl Aj is

w*-measurable and
M*(R) = T(R) = H 1 (A;)
j=1

Also, ®7_13; is included in the o-algebra of u*-measurable subsets of H?:1 X;.

Proof: (a) If R is a measurable interval, then R € £ and, from R C R, we
obviously get u*(R) < 7(R).

Proposition 8.5 implies 7(R) < Z > T(R; ) for every covering R C U°R;
with R; € £ for all i € N. Hence, 7(R ) w*(R) and we conclude that

W (R) = 7(R).
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(b) We take any two measurable intervals R, R and Proposition 8.4 implies that
tNhere are pairwise disjoint measurable intervals Rl, ... Rm so that R’/ \ R =
Ry U---UR,,. By the subadditivity of u*, the result of (a) and Proposition 8.5,

PR N R) + p*(R'\ R) < p*(R' 0 R)+ p*(Ry) + -+ + p*(Ry)
=7(R'NR)+7(Ry)+ -+ 7(Ry)
= 7(R).

(c) Let R € £ and consider an arbitrary E C H?Zl X, with p*(E) < 4o0. For
any € > 0 we consider a covering £ C USSP R; with R; € & for all i € N, such
that ZZ 1 T(R;) < w*(E) + e. By the result of (b) and the subadditivity of u*,

+oo —+oo

w (ENR)+p*(E\R) <Z “(RiNR)+u*(R;\R)) < ZT(Ri) < u*(E)+e.

Since € is arbitrary, u*(E N R) + p*(E\ R) < p*(F) and we conclude that R is
@ -measurable.

Since ®?=1 >); is generated by the collection of all measurable intervals, it
is included in the o-algebra of all p*-measurable sets.

Definition 8.4 Let (X;, X, 1;) be a measure space for each i = 1,...,n and
w* be the outer measure of Definition 8.5. The measure induced from u* by
Theorem 3.1 is called the product measure of p;, 1 < j < n, and it is
denoted
®?=1uj'

We denote by Z®n ; the o-algebra of p*-measurable subsets of H?Zl X;.
Therefore, (H?Zl E@, s @1 15) s a complete measure space.
Theorem 8.8 implzes that

®7_1%5 € Der_u,

and
n n
] Luj H HNJ(A )
j=1 j=1
for every Ay € ¥y,..., A, € 5.
It is very common to consider the restriction, also denoted by ®7_;u;, of
®§L:1,u]‘ on ®§L:12j.

Theorem 8.2 Let (X;,%;, ;) be a measure space for each i = 1,...,n. If
U1, .., Uy are o-finite measures, then

(i) ®F_qp; is the unique measure on (H?:1 X, ®7_1%;) with the property:
(@F_1my) (TT7=, 45) = H;L 11 (Aj) for every Ay € 34,..., A, € Xy, and

(i) the measure space (H 1 X5 Ben_ ®}_14;) is the completion of the mea-
sure space ([15_; X, @135, @ py)-
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Proof: (i) Take the algebra A of subsets of H;.lzl X described in Proposition 8.4.
If 1 is any measure on (IT}—, X;, ®_1%;) such that w(R) = ((}??Zluj)(ﬁ) for
every R € &, then, by additivity of the measures, we have that u(R;U---UR,,) =
(®F_1pj) (R U -+~ U Rp,) for all pairwise disjoint Ry, ..., Ry, € £. Therefore,
the measures p and ®}_,p1; are equal on A.

Since all measures p; are o-finite, there exist Ay) € X, with p; (A;i)) < 400
for every 4,7 and A;i) T Xj; for every j. This implies that the measurable
intervals S; = IT-, Agi) haye the property that S; 1 [[j—, X; and that w(S;) =
(@2_1115)(Si) = T} 15 (AS”) < +o00 for every .

Since ®7_;3; = ¥(&) = %(A), Theorem 2.4 implies that p and ®7_,; are
equal on ®7_,%;.

(ii) We already know that (H?=1 X Ben_ s @ ;) is a complete extension of
(H;;l X5, ®F 1%, @7 ;). Therefore, it is also an extension of the completion

(ITj=, X, @73, ®_, p1j) and it is enough to prove that every E € X

n .
j=1Hi

belongs to ®7_; X;.

Take any E € Xgn_ ., and assume, at first, that (@7_,p;)(E) < +oo.

We take arbitrary k € N and we find a covering £ C U;L"fégk) by pairwise
disjoint measurable intervals so that >, % T(ng)) < (®F_1p5)(E) + +. We
define By, = U;":Ololégk) € ®}_;%; and have that £ C By and (®7_;)(F) <
(®F_115)(Br) < (®F_1p15)(E) + +. Now, define A = N By, € ®7_13;. Then
E € A and (@7_,1;)(E) = (87 11;)(A). Therefore (&7_y1;)(A\ E) = 0.

In case (®7_;p;)(E) = +oo, we consider the specific sets S;, which were
constructed in the proof of part (i), and take the sets F; = E N S;. These
sets have (®7_;u;)(E;) < +oo and, by the previous paragraph, we can find
Ai € ®)_;%; so that E; C A; and (®7_,p5)(A; \ E;) = 0. We define A =
ULYA; € ®}_1%; so that £ C A and, since A\ & C U7 (A; \ E;), we conclude
that (®7_;1;)(A\ E) =0.

We have proved that for every E € E®;:1M there exists A € ®7_;%; so that
EC Aand (®7_;u)(A\ E)=0.

Considering A\ E instead of E, we find a set B € ®”7_,%; so that A\E C B
and (®7_,;)(B\ (A\ E)) = 0. Of course, (®7_,u;)(B) = 0.

Now we observe that E' = (A\ B) U (E'N B), where A\ B € ®/_,%; and
ENBC B e®j]_X; with (®7_;;)(B) = 0. This says that £ € ®@7_,3;.

We shall examine, now, the influence to the product measure of replacing

the measure spaces (X;, ¥, it;) by their completions (X;,%;, fi;).

Theorem 8.3 Let (X;,%;, ;) and (X;,3;, ;) be a measure space and its com-
pletion for every j=1,...,n.
(i) The measure spaces (X;,%;, v;) induce the same product measure space as
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their completions (X;,%;, ;). Namely,

n
(H X, E@?:lm ] 1H5) H o ®?:1/Tj)~
j=1

Moreover, the above product measure space is an extension of both measure
spaces ([15_y Xj, @71 %5, @7_yp;) and ([[_ X;, @755, ®7_171;), of which
the second is an extension of the first.

(ii) If each (X;, %5, pj) is o-finite, then (I]}_ 1 X By ®f=145) is the com-

pletion O.f both (HJ: v®g:12.]7 ®]:1/’[’J) and (H]: v®]:12.77 ®J:1:u])'

Proof: (i) To construct the product measure space ([;_, Xj, Een_uy @f—1hy),

we first consider all ®7_;Y;-measurable intervals of the form R= H?Zl A; for
arbitrary A; € ¥; and then define the outer measure

=inf { Z )| R; are @', ¥ ;-measurable intervals and E C U+°°R }

where 7(R) = 1=, 1(A;) for all R= [T 4

To construct the product measure space (H?:1 Xj,2®;r=17j,®?:1/Tj), we
now consider all ®§‘:127j—measurable intervals of the form R = H;;l A; for
arbitrary A; € ¥; and define the outer measure

=inf { Z ) | R; are ®7_, ¥;j-measurable intervals and E C U/ Rl}

where 7(R) = [1}-, 75 (A;) for all R= [[-, A

Our first task will be to prove that the two outer measures pj and p3 are
identical.

We observe that all ®%_, 3 ;-measurable intervals are at the same time ®7_, 3
measurable and, hence, ui(F) < ui(E) for every E C R™.

Now take any £ C R" with p3(FE) < 400 and an arbitrary ¢ > 0. Then
there exists a covermg E C UjofR with ®"_,3;-measurable intervals R; so

that 327% 7(R;) < u5(E) + €. For each i, write R; = IT-, Ag-l with Ag-l €.
It is clear that there exist Bj(-i) € X, so that A;i) C B](.i) and /TJ(AY)) = [ (BJ(-i)).
We form the ®7_,Y;-measurable intervals R, = 15—, B](i) and have R; C R}
and 7(R;) = 7(R}) for all i. We now have a covering E C Ufoff%’ with ®] 125-
measurable intervals, and this implies pj(E) < ZZ °T(R) = Y% T(Ry) <
w5(E) + €. Since e is arbitrary, we find pj(E) < pi(E). In the remaining case

w5 (E) = 400 the inequality pf(E) < pi(F) is obviously true and we conclude
that

p(E) = ps(E)
for every £ C R™.
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The next step in forming the product measure is to apply the process of
Caratheodory to the common outer measure p* = pi = pj and find the common
complete product measure space

n
(H E@” N7E ] 1“] H E@" 1HG o ®?:1N7j)'

where E®n L Z®n 77 1s the symbol we use for X+, the o-algebra of p*-
measurable sets, and ®" 11 = ®j—_ 1[5 1s the restriction of u* on X,

Theorem 8.3 says that ®7_12; and ®7_,3; are included in Z®n u; and,
since every ®7_;Y;-measurable interval is also a ®J:123 -measurable interval,

we have that ®7_,3%; is included in ®?:127j. Thus
®?:1Ej < ®?:127j < Z®;L:1HJ
(ii) The proof is immediate from Theorem 8.4.

The most basic application of Theorem 8.5 is related to the n-dimensional
Lebesgue measure. The next result is no surprise, since the n-dimensional
Lebesgue measure of any interval in R™ is equal to the product of the 1-
dimensional Lebesgue measure of its edges:

(o) =

Theorem 8.4 (i) The Lebesgue measure space (R",L,, my) is the product
measure space of n copies of (R,Br,m1) and, at the same time, the product
measure space of n copies of (R, L1, my).

(ii) The Lebesgue measure space (R™, L, my,) is the completion of both measure
spaces (R", ®@}_1 Br,mn) = (R", Brn,my) and (R", ®7_, L1,my), of which the
second is an extension of the first.

aJ,

||E§

Proof: We know that ®7_,Br = Brn, that (R, L1,m1) is the completion of
(R, Br, m) and that m; is a o-finite measure.

Hence, Theorem 8.5 implies immediately that the n copies of (R, Bgr,m1)
and, at the same time, the n copies of (R, L1, m;) induce the same product
measure space (R", E®]r;:1m1 , ®%_ymy1), which is the completion of both measure
spaces (R", Brn,®7_;m1) and (R",®7_;L1,®7_m), of which the second is
an extension of the first.

Theorem 8.3 says that, for every Borel measurable interval R= H?Zl Aj, we
have (®?:1m1)(}?) = H?Zl m1(A;). In particular, (®7_;m1)(P) = vol,(P) for
every open-closed interval P in R™ and Theorem 4.5 implies that ®7_;m1 = m,,

on Brn. Hence
(].:{n7 BRn s ®?:1m1) = (Rn, BRR7 mn)

The proof finishes because (R™, L,,, m,,) is the completion of (R™, Brn,my,).
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It is, perhaps, surprising that, although the measure space (R, L1, m1) is
complete, the product (R",®7_,L1,my) is not complete (when n > 2, of
course). It is easy to see this. Take any non Lebesgue measurable set A C R
and form the set E = A x {0} x --- x {0} C R". Consider, also, the Lebesgue
measurable interval R=TRx {0} x---x {0} C R". We have that £ C R and
mp(R) = mi(R)m1({0}) - --m1({0}) = 0. If we assume that (R", ®%_; L1, my,)
is complete, then we conclude that E' € ®7_;L;. We now take z = (0,...,0) €
R™! and, then, the section E, = A must belong to £1. This is not true and

we arrive at a contradiction.

8.3 Multiple integrals.

The purpose of this section is to give the mechanism which reduces the calcu-
lation of product measures of subsets of cartesian products and of integrals of
functions defined on cartesian products to the calculation of the measures or,
respectively, the integrals of their sections. The gain is obvious: the reduced
calculations are over sets of lower dimension.

For the sake of simplicity, we further restrict to the case of two measure
spaces.

Theorem 8.5 Let (X1,%1,p1) and (Xo,Xo, u2) be two measure spaces and
(X x Xo, Y @pes M1 ® u2) be their product measure space.

If B € ¥, 0u, has o-finite u1 ® po-measure, then E,, € Yy and E,, € ¥
for pi-a.e. 1 € X1 and ps-a.e. xo € Xo and the a.e. defined functions

Ty — E(Ezl)a T2 — m(E$2)

are Y1-measurable and, respectively, Yo-measurable. Also,

(0 ) (B) = |

a(Eey) di(en) = [ pr(Ee) o).
X1

X2

Proof: As shown by Theorem 8.5, it is true that Y em = X, 0, and i @ =
11 ® po. It is also immediate that E,, € Yo for pi-a.e. 1 € X if and only if
E,, € Y, for ij-a.e. 11 € X; and, similarly, E,, € ¥, for us-a.e. x5 € Xy if
and only if E,, € ¥, for liz-a.e. 3 € Xo. Hence, the whole statement of the
theorem remains the same if we replace at each occurence the measure spaces
(X1,%1, 11) and (X, X9, o) by their completions (X1, X1, 7i7) and (Xo, Xo, 112).
Renaming, we restate the theorem as follows:

Let (X1,%1, 1), (X2,%0,p12) and (X1 X Xo, X, @u,, 1 @ p2) be two complete
measure spaces and their product measure space. If E € X, gu, has o-finite
11 ® pa-measure, then By € Yo and By, € ¥1 for pi-a.e. ©1 € X5 and po-a.e.
o € Xo and the a.e. defined functions

x1 = po(Ey,), xo — p1(Ey,)
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are Y1-measurable and, respectively, Yo-measurable. Also,

(11 ® o)(E) = /X ia( B, ) dpiy (1) = / i1 (Bay) dpn(22).

X

We are, now, going to prove the theorem in this equivalent form and we
denote N the collection of all sets E € ¥,,,5,, which have all the properties in
the conclusion of the theorem.

(a) Every measurable interval R = A; x Ay belongs to N.

Indeed, R,, = 0, if 1 ¢ Ay, and R,, = Ay, if z € A;. Hence, pa(Ry,) =

t2(A2)xa, (z1) for every z1 € Xj, implying that the function x; — [LQ(le)

is ¥;-measurable. Moreover, we have le p2(Re,) dpy = po(Az) le Xa, dip =

p2(A2)p1 (A1) = (p1 ® p2)(R). The same arguments hold for zs-sections.
(b) Assume that the sets Fi,...FE, € N are pairwise disjoint. Then E =
EiU---UE,, eN.

Indeed, from E,, = (F1)z, U-+-U (Ep)s, for every x; € Xp, we have that
E,, € X5 for py-ae. x1 € Xy and pa(Eyy) = p2((B1)ay) + - + p2((Em)ay)
for pi-a.e. x7 € X;. By the completeness of up, the function z; +— pa(Ey,)
is Xi-measurable and [y pa(Ey,) dui(z1) = 3570, [y, p2((E)ay) dpn (1) =
Z;n:l(ul ® p2)(E;) = (11 @ p2)(E). The same argument holds for zs-sections.
(c) Assume that E, € N for every n € N. If B, 1 E, then E € N.

From (E,)z, 1 E., for every x; € X;, we have that E,, € 3y for pj-a.e.
z1 € X;. Continuity of pg from below implies that pus((En)e,) 1 p2(Ey,) for
pi-a.e. 21 € Xp. By the completeness of up, the function 1 — ug(Fy,) is
31- measurable. By continuity of p1 ® po from below and from the Monotone
Convergence Theorem, we get (p1 ® uo)(E) = le po(Ey,) dp(x1). The same
can be proved, symmetrically, for xo-sections.

(d) Now, fix any measurable interval R with (u; ® p2)(R) < +0o and consider
the collection N of all sets E € ¥, gu, for which E N ReN.

If E,, € Nj for all n and E,, | E, then E € Nj.

Indeed, we have that E, N R | EN R and, hence, (B, N R),;l L (EN ]:3)931
for every 1 € X;. This implies that (E N R)Jcl € Yo for pr-a.e. x1 € Xj.
From the result of (a), le (R, ) dpr (1) = (1 @ p2)(R) < +00 and, hence,
ug(ém) < 400 for pi-a.e. w1 € X;. Therefore, ug((El N R)Il) < 400 for p-
a.e. x1 € X1 and, by the continuity of i from above, we find p2 ((E, N ]-:i)ll) !
o ((EﬂR)xl) for pq-a.e. 1 € X7. By the completeness of pq, the function x; —
p2((EN R)rl) is 3;-measurable. Another application of continuity from above
gives (41 @ p2)(ENR) = le p2((EN f{)zl) dpq(z1) and, since all arguments
hold for zo-sections as well, we conclude that E N R € A" and, hence, E € N -

If B, € Nj for all n and E,, T E, then E, N R 1 ENR and, from the result
of (c), E € N.

We have proved that the collection N is a monotone class of subsets of
X1 x Xs.

If the Fy, ..., E, € Ny are pairwise disjoint and E = E1 U --- U E,,, then
ENR=(E;NR)U---U(E, NR) and, by the result of (b), E € N. From (a),
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we have that N £ contains all measurable rectangles and, hence, N £ contains
all elements of the algebra A of Proposition 8.4. Therefore, N includes the
monotone class generated by A, which, by Theorem 1.1, is the same as the
o-algebra generated by A, namely ¥; ® Y.

This says that EN R € N for every E € ¥; ® ¥y and every measurable
interval R with (ju; ® o) (R) < +o0.
(e) If A is, again, the algebra of Proposition 8.4, an application of the results
of (b) and (d) implies that ENF € A for every F € ¥; ® X5 and every F € A
(f) Now, let E € 31 ® Xo with (u1 ® pu2)(E) < +oo. We find a covering E C
U;=°° R; by measurable intervals so that Zj;of(ul @u2)(Ri) < (1 @u2)(E)+1 <
+o00. We define F,, = U, R; € A and we have that (ju; ® pg)(Fy,) < +oo for
every n. The result of (e) implies that £ N F,, € N and, since, ENF,, T E, we
have, by the result of (c), that E € N.

Hence, E € N for every E € ¥1 ® ¥g with (u1 ® p2)(E) < +o0.
(g) Now let E € ¥, g, with (1 ® p2)(E) = 0. We shall prove that E € N.

We find, for every k € N, a covering FF C U?':Ofégk) by measurable intervals

so that ;Olo (11 ®u2)(1~%§k)) < % We define A;, = szoff%gk) € ¥1®Y5 and have
that £ C Ay and (1 ® pe)(Ax) < % We then write A = ﬂ;i‘iAk SR
and have that E C A and (1 ® pu2)(A) = 0. From the result of (f) we have that
A € N and, in particular, 0 = [ p2(Az,) dpn (1) = [y, p11(Aq,) dpz(w2). The
first equality implies that ps(A,,) = 0 for pi-a.e. 21 € Xy. From E,, C A,,
and from the completeness of pa, we see that E,, € Xo and pus(F,,) = 0 for us-
a.e. 1 € X;. Now, from the completeness of u1, we get that the function x; —
p2(Ey, ) is ¥1-measurable. Moreover, (p; @ p2)(E) =0 = le p2(Eyy ) dpa (z1)
and the same arguments hold for z»-sections. Therefore, E € N.

(h) If E € ¥, @u, has (11 @ p2)(E) < 400, then E € NV,

Indeed, for every kK € N we find a covering E C U;Ongk) by measurable
intervals so that 37 (u1 @ ug)(ng)) < (p1 ® p2)(E) + . We define 4, =
ULOfREk) € X1®%; and have that E C Ay, and (u1 ®pu2)(Ax) < (1 ®@p2)(E)+ %
We then write A = ﬂ;;’cl’Ak € 31 ®Xs and have that F C A and (u1 @ u2)(4) =
(1 @ u2)(E). Hence A\ E € £, 0, has (u1 ® p2)(A\ E) = 0. As in part (g),
we can find A’ € ¥; ® X9 so that A\ E C A" and (u1 ® pg)(A’) = 0. We set
B=A\A €%, ®Y5 and we have B C F and (1 ® p2)(F \ B) = 0. By the
result of (g), we have £\ B € N and, by the result of (f), B € N. By the result
of (b), E=BU(E\ B) € N.

(i) Finally, if E' € ¥,,,g,, has o-finite (11 ® p2)-measure, we find E, € X, ¢,
with (g1 @ p2)(Ey) < +oo for every n and so that E,, T E. Another application
of the result of (c¢) implies that E € N.

Theorem 8.6 Let (X1,%1, u1) and (Xo, Yo, u2) be o-finite measure spaces and
(X1 X Xo,%1 @ Yo, 1 ® pa) be their (restricted) product measure space.
If B € ¥10%,, then B, € 39 and E,, € ¥ for every x1 € X1 and x2 € Xo
and the functions
x1 = po(Ey,), z2 — p1(Ey,)
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are Y1-measurable and, respectively, Yo-measurable. Also,

(11 ® 12)(E) = /X () dyus (1) = /X 11 (Esy) dpis ().

Proof: Exactly as in the proof of Theorem 8.7, we denote A the collection of all
F € Y1 ® Yo which satisfy all the properties in the conclusion of this theorem.
(a) If R is any measurable interval, then R € .

The proof is identical to the proof of the result of (a) of Theorem 8.7. Observe
that, now, all statements hold for every x; € X; and zo € X5 and there is no
need of completeness.

(b) If the sets E1, ... E,, € N are pairwise disjoint, then £ = F1U---UE,, € N.

The proof is identical to the proof of the result of (b) of Theorem 8.7.

(c) If E, € N for every n € N and E,, T E, then E € N.

The proof is identical to the proof of the result of (c¢) of Theorem 8.7.

(d) We fix any measurable interval R = A; x Ay with pi(4;) < 400 and
p2(A2) < +o0o and consider the collection N of all sets E € 31 ® g for which
ENR € N. The rest of the proof of part (d) of Theorem 8.7 continues unchanged
and we get that NV & 1s a monotone class of subsets of X; x X5 which includes
the algebra A of Proposition 8.4. Hence, N, & includes ¥; ® ¥y and this says that
ENReN for every E € £, ® ¥y and every measurable interval R = Ay x Ay
with g1 (A1) < 400 and p2(Ag) < +o0.

(e) Since py is o-finite, we can find an increasing sequence (A(ln)) so that Aﬁ") €
>, Agn) T X; and 0 < ,ul(Agn)) < 400 for every n. Similarly, we can find an
increasing sequence (A5") so that A" € %5, AL 1 X, and 0 < pp(ASY) <
+o0 for every n and we form the measurable intervals R,, = A:(Ln) X Aén).

We take any £ € ¥; @ X9 and, from the result of (d), we have that all sets
E, = EN R, belong to N. Since E, 1 E, an application of the result of (c)
implies that £ ¢ V.

Theorem 8.7 (Tonelli) Let (X1,%1, 1) and (Xao, X9, u2) be measure spaces
and (X1 % Xo, 3, @u,, 11 © p2) be their product measure space.

If f+ X1 x Xo — [0,+00] is X, @u, -measurable and if f~*((0,40o0]) has
o-finite py ® po-measure, then f., is So-measurable for ui-a.e. 1 € X1 and
fu, is X1-measurable for pa-a.e. xo € Xo and the a.e. defined functions

1'1 — fxl d@’ ZEQ — f%z dm
Xg Xl

are L1-measurable and, respectively, Yo-measurable. Also,

/X1><X2 fdmeps) = /X1 ( X far dﬁ) dp (1) = /X2 ( . fzs dm) dpiz(x2).

Proof: (a) A first particular case is when f = y is the characteristic function
of an F € ¥, g, With o-finite p; ® po-measure.
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Theorem 8.7 implies that (xg)z, = xg, Is ¥, —measurable for pi-a.e.

Tl

1 € X, and the function z; — fx2 (XE)z, dliz = Tiz(E,,) is ¥1-measurable.
Finally, we have [ v x5 d(m1 @ p2) = (11 @ p2)(E) = [y, f2(Ex,) din(z1) =
Ix, (fX2 (XE)z, d@) dpii(z1). The argument for zo-sections is the same.

(b) Next, we take ¢ = Z;”:l k;XE; to be the standard representation of a simple
¢ : X1 x Xo — [0,+00), where we omit the possible value x = 0, and which is
%, @up-measurable and so that U7, Ej = ¢~'((0,40c]) has o-finite 13 ® po-
measure. Then, ¢, = D270 Kj(XE; )z and ¢y, = D200 Kj(XE,)a, for every
x1 € X1 and z3 € X5. Therefore, this case reduces, by linearity, to (a).

(c) Finally, we take any X, gu,-measurable f : X; x Xy — [0,400] with
F71((0,4+00]) having o-finite 11 ® po-measure. We take an increasing sequence
(¢n) of X, ou,-measurable simple functions ¢, : X1 x Xo — [0,+00] so that
¢n T fon X1 x Xo. From ¢,, < f, it is clear that ¢, *((0,+oc]) has o-finite
11 @ po-measure for every n. Part (b) says that every ¢,, satisfies the conclusion
of the theorem and, since (¢n)z, 1 fo; and (dn)z, 1 fa, for every 1 € X5 and
9 € Xo, an application of the Monotone Convergence Theorem implies that f
also satisfies the conclusion of the theorem.

Theorem 8.8 (Fubini) Let (X1,%1, 1) and (Xa, X9, o) two measure spaces
and (X1 X Xo, X 0u,» 1 @ p2) their product measure space.

If f: X1 x Xo — R or C is integrable with respect to ji1 @ pa, then fu,
is integrable with respect to @iy for pi-a.e. 1 € Xy and fy, is integrable with
respect to iy for pus-a.e. x9 € Xo and the a.e. defined functions

Ty — f.’l;1 dmv T — .fl‘z dm
X2 Xl

are integrable with respect to i1 and, respectively, integrable with respect to 3.
Also,

/X1><X2 Fd(m®nz) = /Xl ( Y fay dE) dpy(z1) = /Xz ( . fas dE) dpz(x2).

Proof: (a) If f : X5 x X3 — [0,400] is integrable with respect to pu1 ® s,
Theorem 8.9 gives

/ ( ledm)dm=/ ( f@dm)dﬁz/ fd(p @ pa) < +oo.
X1 X2 X X, X1 xXo

This implies fX2 Sz, diiz < +00 for pi-a.e. z; € X and le Ju, dfif < +00
for pus-a.e. xo € Xs. Thus, the conclusion of the theorem is true for non-negative
functions.
(b) If f: X; x X5 — R is integrable with respect to y; ® po, the same is true
for f* and f~ and, by the result of (a), the conclusion is true for these two
functions. Since fu; = (fT)ay — (f )z, and foy, = (f )y — (f )z, for every
1 € X7 and xo € X5, the conclusion is, by linearity, true also for f.
(c) If f: X1 x Xo — C is integrable with respect to p1 ® po, the same is true
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for R(f) and J(f). By the result of (b), the conclusion is true for £(f) and
S(f) and, since fr, = R(f)e, +i3(f)a, and fr, = R(f)ay + iS(f)z, for every
1 € X7 and x5 € X5, the conclusion is, by linearity, true for f.

(d) Finally, let f : X; x X5 — C be integrable with respect to y; ® pro. Then
the set E = f~1({o0}) € Z,,0u, has (11 ® p2)(E) = 0. Theorem 8.7 implies
that iz (E,,) = 0 for pi-a.e. z1 € X7 and f7(E,,) = 0 for ps-a.e. x4 € Xo.

If we define F' = fxge, then F': X7 x Xo — C is integrable with respect to
p1 ® pe and, by (c), the conclusion of the theorem holds for F.

Since F' = f holds (u; ® p2)-a.e. on X1 x X5, we have leXx2 Fd(p ®
t2) = [y, ux, fd(p ® p2). We, also, have that F,, = fi, on X\ Ey,
and, hence, F,, = f;, holds mz-a.e. on X, for puj-a.e. z1 € X;. Therefore,
[z, is integrable with respect to fiz and [y fu, dfiz = [, Fu, dfi, for pi-a.e.

21 € X;. This implies [, ( I, fon dm) dii(ey) = [y, ( [, For dm) dr(z1)
and, equating the corresponding integrals of F', we find fX1><X2 fd(p ® ug) =

le (fX2 fr d@) dpir(z1). The argument is the same for zo-sections.

The power of the Theorems of Tonelli and of Fubini lies in the resulting
successive integration formula for the calculation of integrals over product spaces
and in the interchange of successive integrations. The function f to which we
may want to apply Fubini’s Theorem must be integrable with respect to the
product measure g ® ps. The Theorem of Tonelli is applied to non-negative
functions f which must be ¥, g,,-measurable and whose set f~!((0, 4+00]) must
be of o-finite p; ® po-measure. Thus, the assumptions of Theorem of Tonelli
are, except for the sign, weaker than the assumptions of the Theorem of Fubini.

The strategy, in order to calculate the integral of f over the product space by
means of successive integrations or to interchange successive integrations, is first
to prove that f is ¥, gu,-measurable and that the set {(x1,z2)| f(z1,22) # 0}
is of o-finite 1 ® po-measure. We, then, apply the Theorem of Tonelli to |f|
and have

/)(sz"f'd(”@“?) :/Xl (/X2 [Flex d@)dm=/x2 (/Xl 1o ) dii.

By calculating either the second or the third term in this string of equalities,
we calculate the [ o [fld(1 ® po). If it is finite, then f is integrable with
respect to the product measure py ® o and we may apply the Theorem of Fubini
to find the desired

/X1><X2 f(@r,2) d(pn @ po)(z1, 2) = /

X1

([ flare)di(e) ) dii)
X2

= /)(2( . f(z1,22) M(m)) dfiz(x2).

Of the two starting assumptions, the o-finiteness of {(xz1,z2) | f(x1, z2) # 0}
is usually easy to check. For example, if the measure spaces (X1,%1, 1) and
(X2, X2, p2) are both o-finite, then the measure space (X1 x Xa, X, @u,, 1 ® p2)
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is also o-finite and all subsets of X; x X5 are obviously of o-finite p1 ® po-
measure.

The assumption of 3, ¢ ,-measurability of f is more subtle and sometimes
difficult to verify.

Theorem 8.9 (Tonelli) Let (X1,%1,11) and (Xa,Xo, uo) be o-finite measure
spaces and (X7 X Xo,%1 ® Yo, 1 ® po) be their (restricted) product measure
space.

If f: X1 x X3 — [0,400] is 1 @ Xg-measurable, then f,, is Xo-measurable
for every z1 € X1 and f,, is X1-measurable for every xo € Xo and the functions

T — Sy dpa, o — fao dpn
X2 Xl

are Y1-measurable and, respectively, Yo-measurable. Also,

/xlmfd(‘“@“?) :/X( L dps ) dul(x1)=/xz( | e dpny) dyiz(2).

Proof The measurability of the sections is an immediate application of Theorem
8.2 and does not need the assumption about o-finiteness. Otherwise, the proof
results from Theorem 8.8 in exactly the same way in which the proof of Theorem
8.9 results from Theorem 8.7.

Theorem 8.10 (Fubini) Let (X1,%1, p1) and (X2, X2, u2) be two o-finite mea-
sure spaces and (X1 X Xo, X1 @Yo, 1 @ ua) be their (restricted) product measure
space.

Let f: X1 x Xo — R or C be 1 @ ¥o-measurable and integrable with respect
to p1 @ pa. Then fy, is Ya-measurable for every x1 € X1 and integrable with
respect to ua for pi-a.e. x1 € X1. Also, fz, is X1-measurable for every xo € Xo
and integrable with respect to uy for ps-a.e. xo € Xo. The a.e. defined functions

Ty — le d,“f?a T — facg d,ufl
X2 Xl

are integrable with respect to py and, respectively, integrable with respect to po
and

/xlxngd(m@“z) /X (/X oy dps2) dy (1) /X (/X foa dyir ) dpiz(a2).

Proof: Again, the measurability of the sections is an immediate application of
Theorem 8.2 and does not need the assumption about o-finiteness. Otherwise,
the proof results from Theorem 8.11 in exactly the same way in which the proof
of Theorem 8.10 results from Theorem 8.9.
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8.4 Surface measure on S™ 1.

For every x = (x1,...,2,) € R? = R"™\ {0} we write

- -1
— e S,

r=la|=/af + -+ a2} € R = (0,+00), Y=
x

where S"~1 = {y € R"||y| = 1} is the unit spere of R".
The mapping ® : R” — RT x §”~! defined by

(@) = (ry) = (|l 1)

|z
is one-to-one and onto and its inverse ! : Rt x "~ — R” is given by
e (ry) =a =ry.

The numbers r = |z] and y = 17 are called the polar coordinates of z and

the mappings ® and ®~! determine an identification of R” with the cartesian
product R x §"~! where every point x # 0 is identified with the pair (r,y) of
its polar coordinates.

As usual, we consider S"~! as a metric subspace of R”. This means that
the distance between points of S™~! is their euclidean distance considered as
points of the larger space R™. Namely

Iy—y’\=\/(yl—y’l)2+~-~+(yn—y;)2,

for every y = (y1,.--,yn), ¥ = (¥}, ..., y,) € S"~1. No two points of S"~! have
distance greater that 2 and, if two points have distance 2, then they are opposite
or, equivalently, anti-diametric. The open ball in S"~! with center y € S"~!
and radius r > 0 is the spherical cap S(y;r) = {y’ € S"7'| |y’ — y| < r}, which
is the intersection of the euclidean ball B(y;r) = {z € R" ||z — y| < r} with
Sn~1. In fact, the intersection of an arbitrary euclidean open ball in R™ with
S7=1 is, if non-empty, a spherical cap of S™~ 1.

It is easy to see that there is a countable collection of spherical caps with
the property that every open set in S"~! is a union (countable, necessarily) of
spherical caps from this collection. Indeed, such is the collection of the (non-
empty) intersections with S™~! of all open balls in R" with rational centers and
rational radii: if U is an arbitrary open subset of S"~! and we take arbitrary
y € U, we can find r so that B(y;r) N.S"~! C U. Then, we can find an open
ball B(z';r') with rational 2’ and rational r’ so that y € B(z';r") C B(y;r).
Now, y belongs to the spherical cap B(x';r") NS~ 1 CU.

If we equip R x .S"~! with the product topology through the product metric

d((?", y)a (T/,y/)) = max{|7" - T'/|, |y - y/‘}7

then the mappings ® and ®~! are both continuous. In fact, it is clear that the
convergence (T, yx) — (r,y) in the product metric of R* x S"~! is equivalent
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to the simultaneous r, — r and y; — y. Therefore, if  — x in R?, then
re = |lzk| — |z| = r and y = ‘ﬁ—’;‘ — ﬁ = y and hence ®(x) = (rk,yx) —
(r,y) = ®(z) in R x S"~L. Conversely, if (ry,yx) — (r,y) in RT x S"~! then
rr — r and yx — y and hence ®~1(ry, yx) = reyr — ry = ®71(r,y) in R".

We may observe that the open balls in the product topology of R x §7~1
are exactly all the cartesian products (a,b) x S(y;r) of open subintervals of R
with spherical caps of S7~1.

The next proposition contains information about the Borel structures of R
and of R*, $"~1 and their product Rt x §"~ 1.

Proposition 8.6 (i) Brr» = {E € Br» | E CR}}.

(ii) Br+ = {E € Br|E C R'} and Br+ is generated by the collection of all
open subintervals of R* and, also, by the collection of all open-closed subinter-
vals of RT.

(iii) Bgn-1 = {E € Brn | E C S" 1} and Bgn-1 is generated by the collection
of all spherical caps.

(i) Br+xsn-1 = Br+ @ Bgn-1.

(v) ®(E) is a Borel set in RT x S"~1 for every Borel set E in R? and ®~1(E)
is a Borel set in R? for every Borel set E in Rt x "1,

(vi) M- A= {ry|r e M,y € A} is a Borel set in R} for every Borel set A in
S"~1 and every Borel set M in R*.

Proof: The equalities of (i),(ii) and (iii) are simple consequences of Theorem 1.3
or, more directly, of Exercise 1.6.6. That Br+ is generated by the collection of
all open or of all open-closed subintervals of R™ is due to the fact that every
open subset of R is a countable union of such intervals. Also, that Bgn-1 is
generated by the collection of all spherical caps is due to the fact that every
open subset of S"~! is a countable union of spherical caps.

(iv) Both Br+xgn—1 and Br+ ® Bgn-1 are o-algebras of subsets of the space
R* x S"~1. The second is generated by the collection of all cartesian products
of open subsets of Rt with open subsets of S»~! and all these sets are open
subsets of RT x S”~! and, hence, belong to the first o-algebra. Therefore,
the second o-algebra is included in the first. Conversely, the first o-algebra is
generated by the collection of all open subsets of R x S"~! and every such set
is a countable union of open balls, i.e. of cartesian products of open subintervals
of Rt with spherical caps of S*~!. Thus, every open subset of Rt x S"~1 is
contained in the second o-algebra and, hence, the first o-algebra is included in
the second.

(v) Since ® is continuous, it is (Brn, Br+x g»-1)-measurable and, thus, @' (E)
is a Borel set in R” for every Borel set E in Rt x S"~!. The other statement
is, similarly, a consequence of the continuity of ®~1.

(vi) M x A is a Borel set (measurable interval) in RT x S"~1. Since ® is
continuous, M - A = ®~1(M x A) is a Borel set in R”.

A set I' C R” is called a positive cone if rz € T for every r € R™ and

every © € I' or, equivalently, if " is closed under multiplication by positive
numbers or, equivalently, if I" is invariant under dilations. If B C RZ, then
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the set RT - B = {rb|r € R",b € B} is, obviously, a positive cone and it is
called the positive cone determined by B. It is trivial to see that, if I is
a positive cone and A = I'N S*~!, then I is the positive cone determined by
A and, conversely, that, if A C S"~! and I is the positive cone determined by
A, then I'N S"~! = A. This means that there is a one-to-one correspondence
between the subsets of S”~! and the positive cones of R™.

The next result expresses a simple characterization of open and of Borel
subsets of S"~1 in terms of the corresponding positive cones.

Proposition 8.7 Let A C S™ 1.
(i) A is open in S~ if and only if the cone R* - A is open in R™.
(ii) A is a Borel set in S~ if and only if R* - A is a Borel set in R".

Proof: (i) By the definition of the product topology, A is open in S"~! if and
only if RT x A is open in RT x S"~!. By the continuity of ® and ®~!, this
last one is true if and only if RT - A = ®~1(R* x A) is open in R? if and only
if RT - A is open in R™.

(ii) If A is a Borel set in S™~! then, as a measurable interval, R* x A is a Borel
set in Rt x S"~1. Conversely, if RT x A is a Borel set in RT x S”~!, then
all its r-sections, and in particular A, are Borel sets in S~ !. Therefore, 4 is a
Borel set in S"~! if and only if R* x A is a Borel set in R x S"~1. Proposition
8.6 implies that this is true if and only if RT - A = ®~1(RT x A) is a Borel set
in R™ if and only if R - A is a Borel set in R™.

Proposition 8.8 If we define
on-1(A) =n-m,((0,1] - A)
for every A € Bgn—1, then o,,_1 is a measure on (S"~% Bgn-1).

Proof: By the last statement of Proposition 8.6, (0,1] - A is a Borel set in
R? and thus ¢,,_1(A) is well defined. We have o,,_1(0) = n-m,((0,1] - 0) =
n - my, (@) = 0. Moreover, if Ay, As,... € Bgn-1 are pairwise disjoint, then the
sets (0,1] - A1,(0,1] - Ag, ... are also pairwise disjoint. Hence, an_l(U?:OTAj) =
nemn ((0,1]- U A;) = n-mp (U5 ((0,1]- Aj)) = 35 n-ma ((0,1] - 4;) =

> on1(A4)).

Definition 8.5 The measure 0,1 on (S" ™1, Bgn—1), which is defined in Propo-
sition 8.8, is called the (n — 1)-dimensional surface measure on S 1.

Lemma 8.1 If we define

p(N) :/ " Ldr
N
for every N € Br+, then p is a measure on (RY, Bg+).

Proof: A simple consequence of Theorem 7.13.
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Lemma 8.2 If we define
1 (E) = my, (971 (E))

for every Borel set E in R x S™~ 1, then m,, is a measure on the measurable
space (R x "1 Brtygn-1).

Proof: ®~1(FE) is a Borel set in R for every Borel set E in RT x §"~! and,
hence, m,(E) is well defined. Clearly, m,(0)) = m,(®~1(0)) = m,(®) = 0.
If By, FE,,... are pairwise disjoint, then ®~1(E;), ®~1(E,),... are also pair-
wise disjoint and @(Uj:fE]) = mn(CIJ*l(Uj':O‘ij)) = mn(Uj:‘xl’@’l(Ej)) =
32 ma(@7H(Ey) = 305 min ().

Lemma 8.3 The measures m, and p ® o,_1 are identical on the measurable
space (RT x "1 Briygn1) = (Rt x "1 B+ @ Bgn-1).

Proof: The equality Br+ygn-1 = Br+ ® Bgn—1 is in Proposition 8.6.

If A is a Borel set in S"~!, then the sets (0,b] - A and (0,1] - A are both
Borel sets in R™ and the first is a dilate of the second by the factor b > 0. By
Theorem 4.7, m,,((0,0] - A) = b"m,,((0,1] - A) for every b > 0. By a simple
subtraction we find that m,((a,b] - 4) = (™ — a™)m,((0,1] - A) for every a,b
with 0 < a < b < 4o0.

Therefore, if A is a Borel set in S”~!, then

M ((a, 0] x A) = m, (@1 ((a,b] x A)) = m,((a,b] - A)

b — a™

= (0" —a™)m,((0,1] - A) On—1(A)

= /(a,b] " hdr o1 (A) = p((a,b]) 0n-1(A)
= (p®0on_1) ((a,b] x A).
If we define
p(N) = mn(N x 4),  v(N)=(p@on1)(N x A)

for every Borel set N in R¥, it is easy to see that both p and v are Borel
measures on RT and, by what we just proved, they satisfy u((a,b]) = v((a,b])
for every interval in R™. This, obviously, extends to all finite unions of pairwise
disjoint open-closed intervals. Theorem 2.4 implies, now, that the two measures
are equal on the o-algebra generated by the collection of all these sets, which,
by Proposition 8.6, is Bg+. Therefore,

(N x A) = (p® 01)(N x 4)

for every Borel set N in Rt and every Borel set A in S"1.
Theorem 8.4 implies now the equality of the two measures, because both
measures p and o,_1 are o-finite.
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If E C R7, we consider the set ®(E) C Rt x S"~1. We also consider the
r-sections ®(E), = {y € S" 7| (r,y) € ®(E)} = {y € S"!|ry € E} and the
y-sections ®(E), = {r e RT|(r,y) € ®(E)} = {r e R" |ry € E} of ®(E). We
extend the notation as follows.

Definition 8.6 If E C R", we define, for every r € R* and every y € S"71,
E,={yeS"'|ryecFE}, E,={reR"%|rye E}
and call them the r-sections and the y-sections of E, respectively.

Observe that E may contain 0, but this plays no role. Thus, the sections
of E are, by definition, exactly the same as the sections of ®(E \ {0}). This is
justified by the informal identification of E \ {0} with ®(E \ {0}).

Theorem 8.11 Let E be any Borel set in R™. Then E, is a Borel set in S™ 1
for every r € RY and E, is a Borel set in R for every y € S™! and the
functions

7 on_1(E), y / " Ldr
Ey

are Br+-measurable and, respectively, Bgn—1-measurable. Also,

mn(E):/;OO an_l(Er)rnfldr:/Snil (/E Pt dr) do ().

Proof: The set E \ {0} is a Borel set in R?, while E, = ®(E \ {0}), and
Ey = ®(E\{0})y.
Lemmas 8.2 and 8.3 imply that m,,(E) = m,(E\ {0}) = m, (®(E\ {0})) =
(p ® Op— 1)( (E\ {0})). Proposition 8.6 says that ®(E \ {0}) is a Borel set in
* x 5"~ ! and the rest is a consequence of Theorem 8.8.

The next result gives a simple description of the completion of the measure
space (8"~ !, Bgn-1,0,_1) in terms of positive cones.

Definition 8.7 We denote (S"~ 1,8, _1,0,_1) the completion of the measure
space (S 1 Bgn-1,0,_1).

Proposition 8.9 If A C S~ !, then
(i) A€ S,—_1 if and only if RT - A € L,, if and only if (0,1]- A € L,,,
(it) on—1(A) =n-my,((0,1] - A) for every A € S,_1.

Proof: (i) If A € S,,_1, there exist Ay, Ay € Bgn—1 with o,-1(A2) = 0 so
that A; € A and A\ Ay C Ay. Proposition 8.7 implies that the positive
cones Rt - 4; and RT - A5 are Borel sets in R™ with R - 4; C Rt - 4 and
(RT-A)\ (RT-4;) CR" - As. Lemmas 8.2 and 8.3 or Theorem 8.13 imply
mp(RT - Ay) = p(RT)o,-1(A2) = 0. Hence, RT - A € L,,.

Conversely, let Rt - A € £,,. Then, there are Borel sets By,B, € R"
with m,,(By) = 0, so that By C R" - A and (R - A) \ By C B,. For every
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r € R* we have that (By), C A and A\ (By), C (Bsz),. From Theorem 8.13,
f0+oo 0n_1((Ba))r""tdr = my,(By) = 0, implying that o, _1((B2),) = 0 for
mi-a.e. 7 € (0,400). If we consider such an r, since (B;), and (Bsz), are Borel
sets in S”~1, we conclude that A € S,,_;.

If R"-A € L,, then (0,1]- A = (R - A)n B, € L,. Conversely, if
(0,1]- A € Ly, then RT - A =2k ((0,1] - A) € L.
(ii) We take A € S,,—1 and A1, Ay € Bgn-1 with o,_1(A3) = 0 so that A1 C A
and A\ Ay C A;. Then the sets (0,1] - A; and (0,1] - Ay are Borel sets in
R™ with (0,1] - A; C (0,1] - A and (0,1] - A\ (0,1] - A; C (0,1] - A5. Since
mn((0,1] - Ag) = L 5,_1(A2) = 0, we conclude that o,,_1(A4) = ,-1(4;) =
n-mp((0,1] - A1) =n-my((0,1] - A).

The next result is an extension of Theorem 8.13 to Lebesgue sets.

Theorem 8.12 Let E € L,,. ThenE,. € S,,_1 formi-a.e. r € R" and E, e L,
for op_1-a.e. y € S* ! and the a.e. defined functions

7 op_1(E;), Y "~ Ldr
By

are L1-measurable and, respectively, S,_1-measurable. Also,

my(E) = /0+°0 On_1(E)r" tdr = /Snil (/Ey rl dr) don—1(y).

Proof: We consider Borel sets By, Bs in R™ with m,,(Bs) = 0, so that By C F
and F \ B1 - BQ.

Theorem 8.13 implies that, for every r € R*, (By), and (Bs), are Borel sets
in S"~! with (By), C E, and E, \ (B1), C (B2),. From Theorem 8.13 again,
f0+oo 0n_1((Ba),)r"~tdr = m,(Bs2) = 0 and we get that o,_1((Bs),) = 0 for
my-a.e. v € RT. Therefore, £, € S,,_1 and 0, _1(E,) = 0,_1((B1).) for mi-a.e.
reRT.

Similarly, for every y € S"~!, (By), and (Bs), are Borel sets in R™ with
(B1)y € Ey and E, \ (By), C (B2)y. From [, , (f(Bg)y " hdr) dop—1(y) =
mn(Bg) = 0, we get that f(Bz)y r"~ldr = 0 for o,_1-a.e. y € S™!. This
implies m1((Bz2),) = 0 for o,_1-a.e. y € S""! and, hence, E, € £; and
ny rldr = f(Bl)y r"~Ltdr for o,_1-a.e. y € S""!. Theorem 8.13 implies
mn(E) = mp(B1) = 0+°° On_1((B1))r"tdr = O+OO On_1(E.)r"~1dr and,
alSOa = fSn—l (f(Bl)y Tn71 dT) dO'nfl(y) = fS”—l (ny T‘nil d’l’) dO’nfl(y).

The rest of this section consists of a series of theorems which describe the
so-called method of integration by polar coordinates.

Definition 8.8 Let f : R® — Y. For every r € R™ and every y € S™"! we
define the functions f.:S" ' —Y and fy : RT =Y by the formulas

fr(y) = fy(r) = f(ry).
fr is called the r-section of f and f, is called the y-section of f.

158



The next two theorems cover integration by polar coordinates for Borel mea-
surable functions.

Theorem 8.13 Let f : R™ — [0,+00] be Brr-measurable. Then every f, is
Bgn-1-measurable and every f, is Br+-measurable. The functions

+oo
T f(ry) doy—1, y = / flry)yr~tdr
sn-1 0

are Br+-measurable and, respectively, Bgn-1-measurable. Moreover
+oo

@dme) = [ ([ fondoi)ar
0 Sn—1

/SM ( /0 " g dr) o1 (y).

Proof: The results of this theorem and of Theorem 8.13 are the same in case
f = xg. Using the linearity of the integrals, we prove the theorem in the
case of a simple function ¢ : R™ — [0,+00]. Finally, applying the Monotone
Convergence Theorem to an increasing sequence of simple functions, we prove
the theorem in the general case.

Rn

Theorem 8.14 Let f : R — R or C be Brn-measurable and integrable with
respect to m,,. Then every f, is Bgn—1-measurable and, for mi-a.e. v € RT,
fr is integrable with respect to 0,—1. Also, every f, is Br+-measurable, and
for op_1-a.e. y € ST, f, is integrable with respect to my. The a.e. defined
functions

“+o00
T f(ry)don_1(y), Y / fry)r"tdr
Sn—1 0

are integrable with respect to my and, respectively, with respect to o,_1. Also
—+o0

@dmae) = [ ([ fowdoaa)rtar
0 Sn—1

_ /S - ( /0 o Flryyr =t dr) do 1 (y):

Proof: We use Theorem 8.15 to pass to the case of functions f : R" — R, by
writing them as f = f* — f~. We next treat the case of f : R" — C, by writing
f=R(f) +iS(f), after we exclude, in the usual manner, the set f~!({oco}).

R”

The next two theorems treat integration by polar coordinates in the case
of Lebesgue measurable functions. They are proved, one after the other, using
Theorem 8.14 exactly as Theorems 8.15 and 8.16 were proved with the use of
Theorem 8.13.
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Theorem 8.15 Let f : R™ — [0,+00] be L,-measurable. Then, for mi-a.e.
r € R*, the function f, is S,_1-measurable and, for o,_1-a.e. y € S*~1, the
function f, is Lq1-measurable. The a.e. defined functions

+oo
r— flry)don—1(y), Y- / Flry)yr—Vdr
Sn-1 o

are Lq-measurable and, respectively, S, _1-measurable. Moreover
+o0 L
@dma(e) = [ ([ fowdoaa)rtar
0 Sn—l

_ /S_ (/Om Pyt dr) do 1 (y):

Theorem 8.16 Let f : R* — R or C be L, -measurable and integrable with
respect to m,,. Then, for mi-a.e. ¥ € RT, f, is integrable with respect to o,_1
and, for o,_1-a.e. y € S"7, f, is integrable with respect to mi. The a.e.
defined functions

R»

+oc
r f(ry) dUn—1(y), Yy — / f(?“y)r”_l dr
Sn—1 0

are integrable with respect to my and, respectively, with respect to o,_1. Also
+oo
f@dma@) = [ ([ 1) o) tar
R” 0 Sn—1

_ /S_ (/;OO Pyt dr) do 1 (y):

Definition 8.9 A set E C R" is called radial if x € E implies that x' € E for
all ' with |2'| = |z|.

A function f: R™ =Y s called radial if f(x) = f(z') for every x,x’ with
|| = |2'].

It is obvious that F is radial if and only if yg is radial.
If the set F is radial, we may define the radial projection of E as

E={reR*'|z e E when |z| =r}.

Also, if f is radial, we may define the radial projection of f as the function
f:RT =Y by

for every x € R™ with |z| = r.

It is obvious that a radial set or a radial function is uniquely determined
from its radial projection (except from the fact that the radial set may or may
not contain the point 0 and that the value of the function at 0 is not determined
by its radial projection).
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Proposition 8.10 (i) The radial set E C R"™ is in Brn or in L, if and only
if its radial projection is in Br+ or, respectively, in L1. In any case we have

mu(E) = 0,_1(S"1) /~r"_1 dr.
E
(i1) If (Y,X') is a measurable space, then the radial function f : R™ — Y is
(Brn, X')-measurable or (L, %")-measurable if and only if its radial projection
is (Br+, X')-measurable or, respectively, (L1,%')-measurable.
If f : R™ — [0,+00] is Borel or Lebesque measurable or if f : R®™ — R or
C is Borel or Lebesque measurable and integrable with respect to m,,, then

+oo

R" f () dmn(z) = on-a (5" )/0 flr)yr™tar.

Proof: (i) If E € Brn or E € L, is radial, then, for every y € S"~!, we have
E, = E and, hence, the result is a consequence of Theorems 8.13 and 8.14.

For the converse we may argue as follows: we consider the collection of all
subsets of RT which are radial projections of radial Borel sets in R", we then
prove easily that this collection is a o-algebra which contains all open subsets
of R™ and we conclude that it contains all Borel sets in R™.

Now, if F is radial and E ¢ L1, we take Borel sets M;, My in Rt with
mi(Msz) = 0 so that M; C Eand E \ M; C M,. We consider the radial sets
FE{,FE; C R” so that Evl = M, and E‘vg = M>, which are Borel sets, by the
result of the previous paragraph. Then we have Ey C E and E \ E; C Es.
Since 0 = m,(Fy) = fan (f(EQ)y yn—1 dr) dop_1 = op_1(S™Y) fl:fz =L dp,

we have f];:z r™~1dr and, hence, ml(E';) = 0. This implies that F € £;.

(ii) The statement about measurability is a trivial consequence of the definition
of measurability and the result of part (i). The integral formulas are conse-
quences of Theorems 8.15 up to 8.18.

8.5 Exercises.

1. If B is open in R?, prove that R* - B is open in R”.
If B is a Borel set in R”, prove that R* - B is a Borel set in R™.
2. Consider the measure spaces (R,Bgr,m;) and (R,P(R),f), where f is

the counting measure. If £ = {(z1,22)|0 < 1 = 25 < 1}, prove that
all numbers (m1 @ §)(E), [g §(Ey,)dmi(z1) and [ mi(E,,) df(zs) are

different.
3. Consider @, , =1if m=n, @y, =—-1if m=n+1anda,, =0in any
other case. Then Zz ( ;;O:Ol Umon) # jnozol ( ::ii Am,n). Explain,

through the Theorem of Fubini.
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4. The graph and the area under the graph of a function.

Suppose that (X,¥,u) is a measure space and f : X — [0,400] is -
measurable. If

Ap={(z,y) e X xR0 <y < f(z)}

and
Gr={(z,y) e X xR|y = f(2)},

prove that both Ay and Gy are ¥ ® Br-measurable. If, moreover, p is
o-finite, prove that

(rom)(An) = [ fdu (pem)(Gy) =0,

5. The distribution function.
Suppose that (X, X, ) is a o-finite measure space and f : X — [0, +o0] is
Y-measurable. Calculating the measure 4 ® pe of the set Ay = {(x,y) €
X xR|0<y< f(x)}, prove Proposition 7.14.

6. Consider measure spaces (X1,%1, p1) and (Xa, 3o, pi2), a 31-measurable
f1: X7 — C and a Yo-measurable fo : X9 — C. Consider the function
[ X1 x Xy — C defined by f(x1,22) = fi(z1)f2(2).
Prove that f is 31 ® ¥s-measurable.

If f1 is integrable with respect to puy and fs is integrable with respect to
e, prove that f is integrable with respect to p1 ® po and that

/ fd(p @ p2) = fidu fadps.
X1><X2 Xl X2

7. The volume of the unit ball in R™ and the surface measure of S?1.

(i) If v, = my,(By) is the Lebesgue measure of the unit ball of R™, prove
that

1
vy, = 21),1,1/ (1- 1?2)%1 dt.
0
ii) Set J, = fol(l - tQ)HT_l dt for n > 0 and prove the inductive formula
In = nT_1Jn72> n > 2.
iii) Prove that the gamma-function (defined in Exercise 7.9.38) satisfies

the inductive formula
T(z+1) =2I'(2)

for every z € Hy, and that I'(1) = 1, I['(3) = /7.
(iii) Prove that

w3

3 2T
on-1(S77) = I(

;-

I3
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8.

10.

The integral of Gauss and the measures of B, and of S" 1.

Define .
In:/ 67|I2| dx.

(i) Prove that I,, = I for every n € N.
ii) Use integration by polar coordinates to prove that Iy = 27 and, hence,
g

that ,
/ e dr = (2m)%.

(iii) Use integration by polar coordinates to prove that

+oo 2
(2m)% = an_l(S"_l)/ ez ar
0

and, hence,

[NE

2w
ono1(S") = T(2) "’ Uy = mp(By) =

)

w[3

. From [J" 802 dp = [T ( [+°° ¢~ gt) sin x dz, prove that

—T ging T
dr = —.
0 xr 2
Convolution.

Let f,g: R" — R or C be £,-measurable.

(i) Prove that the function H : R" x R" — R or C, which is defined by
the formula

H(z,y) = f(z —y)g(y),

is Lo,-measurable.
Now, let f and g be integrable with respect to m,,.

(ii) Prove that H is integrable with respect to ms, and

/ \H| i, < / fldm, / gl dmy.
R2" R" R

(iii) Prove that for my-a.e. x € R™ the function f(z — -)g(-) is integrable
with respect to m.,.

The a.e. defined function f % g: R™ — R or C by the formula

(f*g)(z) = flz —y)g(y) dmn(y)

R”

is called the convolution of f and g¢.
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11.

12.

13.

(iv) Prove that f x g is integrable with respect to m.,,, that

/n(f*g)dmn:/nfdmn/ngdmn
/n\f*gldmns/m IfIdmn/Rn \g| dm.

(v) Prove that, for every f,g,h, f1, fo which are Lebesgue integrable, we
have my-a.e. on R™ that fxg = g*f, (fxg)xh = fx(gxh), (A\f)*g = M\ f*g)
and (fi + f2)*g=fixg+ fa*g.

The Fourier transforms of Lebesque integrable functions.

Let f: R" — R or C be Lebesgue integrable over R". We define the
function f: R™ — R or C by the formula

fo) = [ e pla) dma(a),

and

where z-§ = 2181 + - - -z, 18 the euclidean inner-product. The function
f is called the Fourler transform of f

(i) Prove that f1 +fo=fi+fsand )\f A

(ii) Prove that f x g = f g, where fx*g is the convolution defined in Exercise
8.5.10.

(iii) If g(z) = f(z — a) for a.e. z € R™, prove that §(£) = e~27@¢ f(¢) for
all € € R

(iv) If g(z) = e~2™@% f(2) for a.e. x € R™, prove that §(¢) = f(£ + a) for
all £ e R™.

(v) If g(z) = f(x) for a.e. x € R", prove that §(&) = f(—¢) for all
£ e R

(vi) If T : R® — R" is a linear transformation With det(T) # 0 a
g(xz) = f(Tz) for a.e. © € R™, prove that g(§) = det(T) f(( )71E)) for
all § € R", where T™ is the adjoint of T

(vii) Prove that f is continuous on R™.

(viii) Prove that |f(£)] < Jrn |f(z)|dmy(z) for every & € R™.

Let K be a Cantor-type set in [0, 1] of the type considered in Exercise
4.6.16 with my(K) > 0. Prove that {(z,y) € [0,1] x [0,1]|z—y € K} isa
compact subset of R? with positive ms-measure, which does not contain
any measurable interval of positive mo-measure.

Uniqueness of Lebesgue measure.

Let p and v be two locally finite Borel measures on R™, which are trans-
lation invariant. Namely: pu(A+2x) = u(A) and v(A+2z) = v(A) for every
z € R™ and every A € Brn.

Working with fRann xa(@)xs(x + y)d(n ® v)(x,y), prove that either
= Av or v = Au for some A € [0, 4+00).
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14.

15.

16.

17.

18.

19.

Conclude that the only locally finite Borel measure on R which has value
1 at the unit cube [0, 1]™ is the Lebesgue measure m,,.

Let £ C [0,1] x [0, 1] have the property that every horizontal section E,
is countable and every vertical section E, has countable complementary
set [0,1] \ E,. Prove that E is not Lebesgue measurable.

Let (X, 3, 1) be a measure space and (Y, X’) be a measurable space. Sup-
pose that for every x € X there exists a measure v, on (Y, X’) so that for
every B € ¥/ the function z +— v,(B) is X-measurable.

We define v(B) = [ vo(B) du(x) for every B € X'.

(i) Prove that v is a measure on (Y, %').

(ii) If g : ¥ — [0, +00] is X'-measurable and if f(x) = [, g dv, for every
x € X, prove that f is Y-measurable and [y fdu = [, gdv.

Interchange of successive summations.

If I, I5 are two sets of indices with their counting measures, prove that
the product measure on I; X I5 is its counting measure.

Applying the theorems of Tonelli and Fubini, derive results about the
validity of

S = (D i) =D (D ciria)-

i1€1,i0€1o i1€l7 is€ls o€l i1€1y

Consider, for every p € (0,400), the function f : R™ — [0, +oc], defined
by f(z) = -

(i) Prove that f is not Lebesgue integrable over R™.

(ii) Prove that f is integrable over the set As = {x € R" |0 < ¢ < |z|} if
and only if p > 1.

(iii) Prove that f is integrable over the set B = {x € R" ||| < R < 400}
if and only if p < 1.

Suppose that (Y,X) and (X;,¥;) are measurable spaces for all ¢ € I and
that g : X, — Y is (¥;,, X)-measurable. If we define f: [[,.; X; — Y by
f((xl)lel) = g(x;,), prove that f is (®;er2;, ¥)-measurable.

Integration by parts.

Consider the interval~]:2 = (a,b] x (a,b] and partition it into the two
sets Ap = {(t,s) € R[t < s} and Ay = {(t,s) € R[s < t}. Writing
(e @pr)(R) = (pe @ pr) (A1) + (pe @ pr)(Asz), prove Proposition 7.11.
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Chapter 9

Convergence of functions

9.1 a.e. convergence and uniformly a.e. conver-
gence.

The two types of convergence of sequences of functions which are usually stud-
ied in elementary courses are the pointwise convergence and the uniform con-
vergence. We, briefly, recall their definitions and simple properties.

Suppose A is an arbitrary set and f, f, : A — R or C for every n € N. We
say that (f,) converges to f pointwise on A if f,(z) — f(z) for every z € A.
In case f(z) is finite, this means that for every e > 0 there is an ny = ng(e, x)
so that: |fn(z) — f(x)| < e for every n > nyg.

Suppose A is an arbitrary set and f, f,, : A — C for every n € N. We say
that (f,) converges to f uniformly on A if for every e > 0 there is an ng = ng(e)
so that: |fn(z) — f(z)| < € for every x € A and every n > ng or, equivalently,
SUP,ea | frn(x) — f(z)| < € for every n > ng. In other words, (f,,) converges to f
uniformly on A if and only if sup,c 4 | fn(z) — f(z)| — 0 as n — +o0.

It is obvious that uniform convergence on A of (f,,) to f implies pointwise
convergence on A. The converse is not true in general. As a counter-example,
if f, = X(0,1) for every n, then (f,) converges to f = 0 pointwise on (0,1) but
not uniformly on (0, 1).

Let us describe some easy properties.

The pointwise limit (if it exists) of a sequence of functions is unique and,
hence, the same is true for the uniform limit.

Assume that f,g, fn,9n : A — C for all n. If (f,) converges to f and
(gn) converges to g pointwise on A, then (f, + g,) converges to f + g and
(fngn) converges to fg pointwise on A. The same is true for uniform conver-
gence, provided that in the case of the product we also assume that the two
sequences are uniformly bounded: this means that there is an M < +00 so that
| fn(@)],|gn(z)] < M for every & € A and every n € N.

Another well-known fact is that, if f,, : A — C for all n and (f,) is Cauchy
uniformly on A, then there is an f : A — C so that (f,) converges to f
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uniformly on A. Indeed, suppose that for every € > 0 there is an ng = ng(e) so
that: |fn(z) — fm(x)] < € for every z € A and every n,m > ng. This implies
that, for every x, the sequence (f,(x)) is a Cauchy sequence of complex numbers
and, hence, it converges to some complex number. If we define f : A — C by
f(z) = limy,— 4o fn(z) and if in the above inequality |f,(z) — fi(z)| < € we
let m — 400, we get that |f,(z) — f(z)] < € for every x € A and every n > nyg.
Hence, (f,) converges to f uniformly on A.

It is almost straightforward to extend these two notions of convergence to
measure spaces.

Suppose that (X, X, p) is an arbitrary measure space.

We have already seen the notion of a.e. convergence. If f, f, : X — R or
C for every n, we say that (f,,) converges to f (pointwise) a.e. on A € %
if there is a set B € X, B C A, so that u(A\ B) = 0 and (f,) converges to f
pointwise on B.

If f, f, : X — Ror C for every n, we say that (f,) converges to f uniformly
a.e. on A€ XY if thereisaset B€ X, B C A, so that u(A\ B) =0, f and f,
are finite on B for all n and (f,,) converges to f uniformly on B.

It is clear that uniform convergence a.e. on A implies convergence a.e. on
A. The converse is not true in general and the counter-example is the same as
above.

If (f,.) converges to both f and f’ a.e. on A, then f = f" a.e. on A. Indeed,
there are B, B’ € ¥ with B, B’ C A so that u(A\ B) = u(A\ B’) = 0 and
(fn) converges to f pointwise on B and to f’ pointwise on B’. Therefore, (f,)
converges to both f and f’ pointwise on B N B’ and, hence, f = f' on BN B’.
Since pu(A\ (BN B')) = 0, we get that f = f" a.e. on A. This is a common
feature of almost any notion of convergence in the framework of measure spaces:
the limits may be considered unique only if we agree to identify functions which
are equal a.e. on A. This can be made precise by using the tool of equivalence
classes in an appropriate manner, but we postpone this discussion for later.

We can, similarly, prove that if (f,) converges to both f and f’ uniformly
a.e. on A, then f = f’' a.e. on A.

Moreover, if f,g, fn,gn : A — C a.e. on A for every n and (f,) converges
to f and (g,) converges to g a.e. on A, then (f, + g,) converges to f + g and
(fngn) converges to fg a.e. on A. The same is true for uniform convergence
a.e., provided that in the case of the product we also assume that the two
sequences are uniformly bounded a.e.: namely, that there is an M < 400 so
that |ful, lgn] < M a.e. on A for every n € N.

9.2 Convergence in the mean.

Assume that (X, 3, ) is a measure space.

Definition 9.1 Let f, f, : X — R or C be measurable for all n. We say that
(fn) converges to f in the mean on A € ¥ if f and f,, are finite a.e. on A
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for all n and
[ 152 = Al =0
A

as n — +0oo.
We say that (f,) is Cauchy in the mean on A € X if f,, is finite a.e. on
A for allm and

[ 180~ faldn =0
A
as m,n — +00.

It is necessary to make a comment regarding the definition. The functions
|fn— fland | f, — fim| are defined only a.e. on A. In fact, if all f, f,, are finite on
B € ¥ with B C A and u(A\ B) =0, then |f, — f| and |f,, — fm| are all defined
on B and are Y] B-measurable. Therefore, only the integrals [ |f, — f| du and
S |fn = fm| dp are well-defined. If we want to be able to write the integrals
Jalfu = fldp and [, |fn — fm|dp, we must extend the functions |f, — f| and
|fn — fm| on X so that they are ¥-measurable and, after that, the integrals
Jalfa = fldpw and [, |fn — fm|dp will be defined and equal to [5|fn — f|dp
and || 5 |fn — fmldp, respectively. Since the values of the extensions outside B
do not affect the resulting values of the integrals over A, it is simple and enough
to extend all f, f,, as 0 on X \ B.

Thus, the replacement of all f, f,, by 0 on X \ B makes all functions finite
everywhere on A without affecting the fact that (f,) converges to f in the mean
on A or that (fy) is Cauchy in the mean on A.

Proposition 9.1 If (f,) converges to both f and f' in the mean on A, then
f=1f ae onA.

Proof: By the comment of the previous paragraph, we may assume that all f, f’
and f, are finite on A. This does not affect either the hypothesis or the result
of the statement.

We write fA|f_f/|d.u < fA‘fn_ﬂd,U"'fAUn — f'ldp — 0 as n — +oo0.
Hence, fA |f — f'| du = 0, implying that f = f a.e. on A.

Proposition 9.2 Suppose (f,) converges to f and (g,) converges to g in the
mean on A and A € C. Then

(i) (fn + gn) converges to f + g in the mean on A.

(ii) (Afn) converges to Af in the mean on A.

Proof: We may assume that all f, g, f,, gn are finite on A.

Then, fA‘(fn‘an)_(f‘Fg”d,uS fA|fn_f‘d,UJ+fA|gn_g‘d/’J—>Oas
n — o0, and [, [\fn — Af|dp =X [, |fn — fldp — 0 as n — +o0.

It is trivial to prove that, if (f,) converges to f in the mean on A, then
(fn) is Cauchy in the mean on A. Indeed, assuming all f, f,, are finite on A,

Salfn = fmld < [y 1fn = fldu+ [, |fm — fldp — 0 as n,m — 4oco. The
following basic theorem expresses the converse.
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Theorem 9.1 If (f,) is Cauchy in the mean on A, then there is f : X — C
so that (f,) converges to f in the mean on A. Moreover, there is a subsequence
(fn,) which converges to f a.e. on A.

As a corollary: if (f,) converges to f in the mean on A, there is a subse-
quence (fy,) which converges to f a.e. on A.

Proof: As usual, we assume that all f, f,, are finite on A.

We have that, for every k, there is ny so that [, |fn — fm|dp < 2% for
every m,m > ngp. Since we may assume that each nj is as large as we like,
we inductively take (ng) so that ny < ngy1 for every k. Therefore, (f,,) is a
subsequence of (fy,).

From the construction of nj and from ng < ngy1, we get that

1
/A |fnk+1 - fnk|d.u < 27
for every k. Then, the measurable function G : X — [0, +00] defined by

G{ :;.Ol‘fnk+1*fnk|7 on A
0,

on A¢

satisfies [ Gdp = 3025 [ fonss — fanldp = 1 < +oo. Thus, G < +oo
a.e. on A and, hence, the series Z:j(fnkﬂ(x) — fn, (z)) converges for a.e.
x € A. Therefore, there is a B € ¥, B C A so that u(A\ B) = 0 and
;z(fnwl (x) — fn,(x)) converges for every x € B. We define the measurable
f: X —Cby
f — {fm + Z;:i(fnkﬂ - fnk)v on B
0, on B¢,

On B we have that f = f’ﬂl +th~>+oo 25:711 (fnk+1 _fnk) = limKH+OO an

and, hence, (f,,) converges to f a.e. on A.
We, also, have on B that |f.,. — f| = |fox — fro, — ;j:{(fnkﬂ — fu)l =

IS K s = o) = 02 Fres — Fan)l < 5555 [ fanar — fun| for all K.
Hence,

R =1 1
/|an_f|d,U§Z/‘f7Lk+1_fnk|dﬂ<Zik:ﬁ—>o
A k=K A i 2 2

as K — +oo.

From ny — +o0, we get fA |fk_f| dp < fA |fk_fnk|du+fA |fnk_f| dp— 0
as k — +oo and we conclude that (f,) converges to f in the mean on A.

Example

Consider the sequence fi = X(0,1), f2 = X(0,): /3 = X(2.1),f4 = X(0,1), fs =

X(%,%yfﬁ = X(%,U’f? = X(0,1) fs = X(%,%),fg =X(2,3),J10 = X(3,1) and so on.
It is clear that f(O,l) | fr(x)] dmq(x) — 0 as n — +oo (the sequence of inte-

gralsis 1, %, %, %, %, %, %, i, i, i, ...) and, hence, (f,) converges to 0 in the mean
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on (0,1). By Theorem 9.1, there exists a subsequence converging to 0 a.e. on
(0,1) and it is easy to find many such subsequences: indeed, fi = x(0,1), f2 =
X(0,3) fa= X(0,1) fr= X(0,1) and so on, is one such subsequence.

But, it is not true that (f,) itself converges to 0 a.e. on (0,1). In fact, if
x is any irrational number in (0,1), then x belongs to infinitely many intervals
of the form (21, £ (for each value of m there is exactly one such value of k)
and, thus, (f,(z)) does not converge to 0. It easy to see that f,(z) — 0 only
for every rational x € (0, 1).

We may now complete Proposition 9.2 as follows.

Proposition 9.3 Suppose (f,) converges to f and (g,) converges to g in the
mean on A.

(i) If there is M < +00 so that |fn| < M a.e. on A, then |f| < M a.e. on A.
(i1) If there is an M < 400 so that |ful,|gn] < M a.e. on A, then (fngn)
converges to fg in the mean on A.

Proof: (i) Theorem 9.1 implies that there is a subsequence ( fy,, ) which converges
to f a.e. on A. Therefore, |f,, | — |f| a.e. on A and, hence, |f| < M a.e. on A.
(ii) Assuming that all f,g, fn, g, are finite on A and using the result of (i),

fA|fngn_fg|dﬂSfA'fngn_fgn|d;u'+fA‘fgn_fg|d:u§MfA|fn_f|dﬂ+
M [, |gn — gldp — 0 as n — 4oo0.

9.3 Convergence in measure.

Assume that (X, X, u) is a measure space.

Definition 9.2 Let f, f, : X — R or C be measurable for all n. We say that
(fn) converges to f in (u-)measure on A € ¥ if all f, f, are finite a.e. on
A and if for every e > 0 we have

p(fz € Af|fu(x) — f(2)] = €}) = 0

as n — +00.
We say that (f,) is Cauchy in (u-)measure on A € X if all f,, are finite
a.e. on A and if for every e > 0 we have

n{z € Allfn(x) = fm(z)] = €}) = 0

as n,m — +00.

We make a comment similar to the comment following Definition 9.1. If
we want to be able to write the values p({z € Al|fn(z) — f(x)] > €}) and
p{z € Al|fu(z) — f(x)] > €}), we first extend the functions |f, — f| and
|fn — fm| outside the set B C A, where all f, f,, are finite, as functions defined
on X and measurable. Then, since u(A \ B) = 0, we get that the above values
are equal to the values u({zx € B||f.(x)— f(x)] > €}) and, respectively, u({z €
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B |fn(x) — f(x)] > €}). Therefore, the actual extensions play no role and,
hence, we may for simplicity extend all f, f, as 0 on X \ B.

Thus the replacement of all f, f,, by 0 on X \ B makes all functions finite
everywhere on A and does not affect the fact that (f,,) converges to f in measure
on A or that (fy,) is Cauchy in measure on A.

A useful trick is the inequality

p{z € Al[f(2) +9(2)| 2 a+0}) < p({z € A[|f(2)] = a})
+ n({z € Allg(x)] = b}),

which is true for every a,b > 0. This is due to the set-inclusion
{z e Al[f(z) +9(z)| Z a+b} C{z € A|[f(x)] = a} U{z € Al|g(z)| = b}.

Proposition 9.4 If (f,) converges to both f and f’ in measure on A, then
f=1/f ae onA.

Proof: We may assume that all f, f/, f,, are finite on A.

Applying the above trick we find that p({z € Al|f(z) — f'(x)] > €}) <
ulz € Allfal@) — f@)] > §1) + ul{z € Allfale) — F(2)] > 1) — 0 as
n — +oo. This implies u({z € A||f(z) — f'(x)| > €}) = 0 for every € > 0.

We, now, write {z € A| f(z) # f'(¥)} = U2 {z € A|[f(x) — f'(2)| > £}
Since all terms in the union are null sets, we get p({z € A| f(z) # f'(z)}) =0
and conclude that f = f’ a.e. on A.

Proposition 9.5 Suppose (f,) converges to f and (gn) converges to g in mea-
sure on A and A € C. Then

(i) (fn + gn) converges to f + g in measure on A.

(ii) (Afn) converges to Af in measure on A.

(i) If there is M < +00 so that |fn| < M a.e. on A, then |f| < M a.e. on A.
(iv) If there is M < +00 so that | fnl, |gn] < M a.e. on A, then (fngn) converges
to fg in measure on A.

Proof: We may assume that all f, f,, are finite on A, since all hypotheses and all
results to be proved are not affected by any change of the functions on a subset
of A of zero measure.
(i) We apply the usual trick and pu({z € A||(fr + gn)(x) — (f +9)(x)] > €}) <
i({z € Allfu(@) — @) = £1) + pl{e € Allga(®) - g(@)| = £} — 0 as
n — +00.
(i) Also j({z € A| I\ fu(2)=Af(@)] = €}) = u({z € A||fula)—F@)| = 5}) —
0 asn — 4o0.
(iif) We write p({z € A[[f(z)| = M +€}) < p({z € Al[fu(z)] = M + 35}) +
iz € Allfal@) — F@)] > 1) = p({z € A||fa(e) — F(z)| > 5}) — 0
n — +oo. Hence, u({z € A||f(z)| > M + €}) = 0 for every € > 0.

We have {z € A||f(z)| > M} C U:z{l' € Al|f(z)] > M + +} and, since
all sets of the union are null, we find that u({z € A||f(x)] > M}) = 0. Hence,
|f| < M ae. on A.

(iv) Applying the result of (iii), u({z € A[[fn(x)gn(z) — f(2)g(z)] = €}) <

172



u({z € Al fo(x)gn(x) = fu(x)g(z )I Zsh) e € Al|fnlz)g(x) — f(2)g(x)] =
51 < n({z € Allgn(2) —9(2)] = 557 }) + n({x € A[|fu(2) = f(2)] = 357}) = 0

as n — 400.

If (f) converges to f in measure on A, then (f,,) is Cauchy in measure on A.
Indeed, taking all f, f,, finite on A, u({z € A||fn(z) — fm(x)| > €}) < p({x €
Allfn(@) = f(@)] = §}) + n({z € A[[fm(z) = f(z)| = §}) — 0 as n,m — +oc.

Theorem 9.2 If (f,) is Cauchy in measure on A, then there is f : X — C
so that (f,) converges to [ in measure on A. Moreover, there is a subsequence
(fni) which converges to f a.e. on A.

As a corollary: if (fn) converges to f in measure on A, there is a subsequence
(fn,) which converges to f a.e. on A.

Proof: As usual, we assume that all f,, are finite on A.

We have, for all k, p({z € A||fa(z) — fm(2)] > 5£}) — 0 as n,m — +oo.
Therefore, there is nj, so that u({z € Al|fu(z) — fm(z)| = 5}) < 55 for
every m,m > nj. Since we may assume that each ny is as large as we like, we
may inductively take (ng) so that ny < ngy; for every k. Hence, (fy,,) is a
subsequence of (f,) and, from the construction of nj and from ng < ngy1, we
get that

p({7 € Allfars @ — Fnn @] = 52 }) < 5

for every k. For simplicity, we write

B = {2 € Allfuce @) = ) = 55}

and, hence, u(Ey) < 5 for all k. We also define the subsets of A:

Fn,=U{> By, F =n}2F, =limsup B .

Now, p( m) < Zk > u(Er) < Zk v 3% = gt and, hence, u(F) <
w(Fy) < 2,”,1 for every m. This implies

w(F)=0.

If x € A\ F, then there is m so that x € A\ F,,, which implies that x € A\ Fj,
for all k& > m. Therefore, |fy,.,(x) — fn,(x)] < 35 for all k > m, so that

:(—ij |f7’Lk+1 (33) - fnk ($)| < QTl—l Thus, the series Zﬁiom(fnk+1(x) - fnk (I))
converges and we may define f : X — C by

f:{fnm S frss = fu)s om A\ F
0, on AU F.

By f(l') = fnl( )+th*>+OO Zk 1 (fnk+1( )_fnk(x)) = 11mK~>+oo an({,E)

for every x € A\ F and, from p(F) = 0, we get that (f,, ) converges to f a.e.
on A.
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NO‘in on A\Fm we have |fnm - fl = |fnm - fn1 - Z;.Cl)(fnk+1 - fnk)| =
|ZZL:71 (fnk+1 - fnk) - zzool(f’ﬂk+1 - f'ﬂk)| S Zz:oom|fnk+1 - f’ﬂk| < Qm%l
Therefore, {x € A||f,,.(x) — f(z)| = 7=} € F,, and, hence,

w({r € Al @) = 1) = s }) < (Fw) < gy

Take an arbitrary € > 0 and mg large enough so that 2,,7% <e. If m>mg,
{2 € Al fun (&) = f(2)] = €} C {& € A[|fa,,(2) — f(z)] > 3rr} and, hence,

p({ € Al (&)~ 1) 2 ) < g — 0

as m — +oo. This means that (f,,) converges to f in measure on A.
Since ni — 400 as k — 400, we get u({x € A||fu(x) — f(z)| > €}) <

n{z € Allfi(@) = fa,(2)] = 5}) + n({z € Al[fn.(z) — f(x)] = 5}) — 0 as
k — 400 and we conclude that (f,) converges to f in measure on A.

Example

We consider the example just after Theorem 9.1. If 0 < ¢ < 1, the sequence
of the values mi({z € (0,1)||fu(z)| > €})is 1,4, 2,2 2 4 4 L L1 and,
hence, converges to 0. Therefore, (f,) converges to 0 in measure on (0, 1). But,

as we have seen, it is not true that (f,) converges to 0 a.e. on (0, 1).

9.4 Almost uniform convergence.

Assume that (X, X, ) is a measure space.

Definition 9.3 Let f, f, : X — R or C be measurable for alln € N. We say
that (f,) converges to f (u-)almost uniformly on A € X if for every § > 0
there is B € X, B C A, so that u(A\ B) < ¢ and (fy) converges to f uniformly
on B.

We say that (f,) is Cauchy (u-)almost uniformly on A € X if for every
0 >0 thereis B € X, B C A, so that u(A\B) < § and (f,) is Cauchy uniformly
on B.

Suppose that some g : X — R or C is measurable and that, for every k,
there isa By € ¥, By, C A, with u(A\ Bg) < % so that ¢ is finite on Bj. Now, it
is clear that g is finite on the set F = U > B, and that u(A\F) < p(A\B) < 1
for all k. This implies that pu(A \ F') = 0 and, hence, g is finite a.e. on A.

From the statement of Definition 9.3. it is implied by the uniform conver-
gence that all functions f, f,, are finite on sets B € 3, B C A with u(A\ B) < 4.
Since ¢ is arbitrary, by the discussion in the previous paragraph, we conclude
that, if (fn) converges to f almost uniformly on A or if it is Cauchy almost
uniformly on A, then all f, f,, are finite a.e. on A. Now, if F € 3, FF C A with
1(A\ F) = 0 is the set where all f, f,, are finite, then, if we replace all f, f,, by 0
on X \ F, the resulting functions f, f, are all finite on A and the fact that (fy)
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converges to f almost uniformly on A or that it is Cauchy almost uniformly on
A is not affected.

Proposition 9.6 If (f,) converges to both f and f’ almost uniformly on A,
then f = f' a.e. on A.

Proof: Suppose that pu({x € A|f(z) # f'(z)}) > 0. For simplicity, we set
E={xeAlf(z) # f'(x)}.

We find B € X, B C A, with u(A\ B) < @ so that (f,) converges to f

uniformly on B. We, also, find B’ € &, B’ C A, with u(A\ B’) < @ so that
(fn) converges to f’ uniformly on B’. We, then, set D = BN B’ and have that
w(A\ D) < p(E) and (f,,) converges to both f and f’ uniformly on D. This, of
course, implies that f = f' on D and, hence, that DN E = (.

But, then, E C A\ D and, hence, u(E) < u(A\ D) < u(E) and we arrive
at a contradiction.

Proposition 9.7 Suppose (f) converges to f and (g,) converges to g almost
uniformly on A. Then

(i) (frn + gn) converges to f + g almost uniformly on A.

(i1) (Afn) converges to Af almost uniformly on A.

(i11) If there is M < +00 so that |fn| < M a.e. on A, then |f| < M a.e. on A.
(iv) If there is M < +00 so that | fnl, |gn] < M a.e. on A, then (fngn) converges
to fg almost uniformly on A.

Proof: We may assume that all f, f,, are finite on A.
(i) For arbitrary 6 > 0, there is B’ € 3, B’ C A, with u(A\ B’) < g so that (fy)
converges to f uniformly on B’ and there is B” € ¥, B” C A, with u(A\B") < g
so that (g,) converges to g uniformly on B”. We take B = B’ N B” and have
that u(A\ B) < § and that (f,) and (g,) converge to f and, respectively, g
uniformly on B. Then (f, + g,) converges to f + g uniformly on B and, since
4 is arbitrary, we conclude that (f,, 4+ ¢gn) converges to f + g almost uniformly
on A.
(ii) This is easier, since, if (f,) converges to f uniformly on B, then (Af,)
converges to Af uniformly on B.
(iii) Suppose p({z € A||f(z)] > M}) >0 and set E = {z € A||f(z)| > M}.
We find B € 3, B C A, with u(A\ B) < u(FE) so that (f,) converges to f
uniformly on B. Then we have |f| < M a.e. on B and, hence, (BN E) = 0.
Now, p(E) = p(E'\ B) < u(A\ B) < p(E) and we arrive at a contradiction.
(iv) Exactly as in the proof of (i), for every 6 > 0 we find B; € ¥, B; C A,
with p(A\ By) < d so that (f,) and (g,) converge to f and, respectively, g
uniformly on By. By the result of (iii), |f|] < M a.e. on A and, hence, there is
a By € ¥, By C A with pu(A\ B2) = 0 so that |f,|,|gnl,|f| < M on By. We
set B = By N By, so that u(A\ B) = u(A\ B1) < ¢. Now, on B we have that
|fngn - fg‘ < |fngn - fgn| + |fgn - fg| < len - f| +M|gn _g| andv thus,
(fngn) converges to fg uniformly on B. We conclude that (f,g,) converges to
fg almost uniformly on A.
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One should notice the difference between the next result and the correspond-
ing Theorems 9.1 and 9.2 for the other two types of convergence: if a sequence
converges in the mean or in measure, then a.e. convergence holds for some sub-
sequence, while, if it converges almost uniformly, then a.e. convergence holds
for the whole sequence (and, hence, for every subsequence).

Before the next result, let us consider a simple general fact.

Assume that there is a collection of functions g; : B; — C, indexed by the
set I of indices, where B; C X for every ¢ € I, and that (f,) converges to g;
pointwise on B;, for every i € I. If x € B; N B; for any ¢,j € I, then, by the
uniqueness of pointwise limits, we have that g;(xz) = g;(z). Therefore, all limit
functions have the same value at each point of the union B = U;¢;B; of the
domains of definition. Hence, we can define a single function f : B — C by

where i € I is any index for which « € B;, and it is clear that (f,,) converges to
f pointwise on B.

Theorem 9.3 If (f,) is Cauchy almost uniformly on A, then there is an f :
X — C so that (f,) converges to f almost uniformly on A. Moreover, (fy)
converges to f a.e. on A.

As a corollary: if (fn) converges to f almost uniformly on A, then (f,)
converges to f a.e. on A.

Proof: For each k, there exists By € X, By, C A, with u(A\ By) < 1 so that
(fn) is Cauchy uniformly on By. Therefore, there is a function g : By — C so
that (f,) converges to g uniformly and, hence, pointwise on By.

By the general result of the paragraph just before this theorem, there is an
f: B — C, where B = U;;“I’Bk, so that (f,) converges to f pointwise on B.
But, u(A\ B) < u(A\ By) < ¢ for every k and, thus, u(4\ B) = 0. If we
extend f : X — C, by defining f = 0 on B¢, we conclude that (f,) converges
to f a.e. on A.

By the general construction of f, we have that g = f on By and, hence,
(fn) converges to f uniformly on Bg. If § > 0 is arbitrary, we just take k large
enough so that 1+ < § and we have that (A \ By) < 6. Hence, (f,) converges
to f almost uniformly on A.

9.5 Relations between types of convergence.

In this section we shall see three results describing some relations between the
four types of convergence: a.e. convergence, convergence in the mean, con-
vergence in measure and almost uniform convergence. Many other results are
consequences of these.

Let (X, %, 1) be a measure space.

Theorem 9.4 If (f,) converges to f almost uniformly on A, then (f,) con-
verges to f a.e. on A.
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The converse is true under the additional assumption that either
(i) (Egoroff) all f, f, are finite a.e. on A and u(A) < +oo
or
(i) there is a g : A — [0,+00] with [, gdu < +oo and |fn] < g a.e. on A for
every n.

Proof: The first statement is inluded in Theorem 9.3.

(i) Assume (f,) converges to f a.e. on A, all f, f,, are finite a.e. on A and
u(A) < +o00. We may assume that all f, f,, are finite on A and, for each k,n,
we define

o 1
B (k) = U5E, {2 € Al (@) = f@)] > 1 }-
If C = {x € A| fu(x) — f(x)}, then it is easy to see that NT>E, (k) C A\ C.
Since (A \ C) = 0, we get u(N2E,(k)) = 0 for every k. From E,(k) |
Nt En(k), from p(A) < +o00 and from the continuity of u from above, we find
that pu(F,(k)) — 0 as n — +oo. Hence, for an arbitrary § > 0, there is ng so

that 5
We define
E:LJ;SEM(I{), B=A\E

and have pu(E) < 320° u(E,, (k) < 8. Also, for every 2 € B we have that, for
every k > 1, | fn(z) — f(x)| < & for all m > nj. Equivalently, for every k > 1,

sup | fm(2) — f(2)] <

zEB

T =

for every m > ny. This implies, of course, that (f,,) converges to f uniformly
on B. Since u(A\ B) = u(E) < 0, we conclude that (f,) converges to f almost
uniformly on A.

(i) If |fn] < g a.e. on A for all n, then also |f| < g a.e. on A and, since
ngdu < 400, all f, f, are finite a.e. on A. Assuming, as we may, that all
f, fn are finite on A, we get |f, — f| < 2g a.e. on A for all n. Using the same
notation as in the proof of (i), this implies that E,(k) C {z € A|g(z) > 5}
except for a null set. Therefore

(B (k) < u({x € Alg(x) > i})

for every n, k. It is clear that the assumption [ 4 9dp < +oo implies

y({m € Alg(x) > i}) < +o0.

Therefore, we may, again, apply the continuity of p from above to find that
w(En(k)) — 0 as n — +oo. From this point, we repeat the proof of (i) word for
word.
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Example
If fr = X(n,n+1) for every n > 1, then (f,,) converges to 0 everywhere on R, but
(fn) does not converge to 0 almost uniformly on R. In fact, if 0 < § < 1, then
every Lebesgue measurable B C R with m (R \ B) < § must have non-empty
intersection with every interval (n,n + 1) and, hence, sup,cp |fn(z)] > 1 for
every n.

In this example, of course, m;(R) = 400 and it is easy to see that there is
no g : R — [0, +00] with fR g(x) dmq(z) < +oo satisfying f,, < g a.e. on R for
every n. Otherwise, g > 1 a.e. on (1,+00).

Theorem 9.5 If (f,) converges to f almost uniformly on A, then (f,) con-
verges to f in measure on A.

Conversely, if (fn) converges to f in measure on A, then there is a subse-
quence (frn,) which converges to f almost uniformly on A.

Proof: Suppose that (f,,) converges to f almost uniformly on A and take an
arbitrary € > 0. For every § > 0 thereis a B € 3, B C A, with u(A\ B) < J so
that (f,) converges to f uniformly on B.

Now, there exists an ng so that |f,(z) — f(z)| < € for all n > ng and
every x € B. Therefore, {x € Al||fn(z) — f(z)] > ¢} C A\ B and, thus,
p{z € A||fu(z) — f(z)| > €}) < § for all n > ny.

This implies that u({z € A||fn(z) — f(z)| > €}) — 0 as n — +oo and (fy,)
converges to f in measure on A.

The idea for the converse is already in the proof of Theorem 9.2.

We assume that (f,,) converges to f in measure on A and, without loss of
generality, that all f, f,, are finite on A. Then pu({z € A||fn(z)—f(z)] > 5%}) —
0 as n — +oo and there is ng so that p({z € A||fn(z) — f(2)| = 55}) < 5 for
all n > ng. We may, inductively, assume that ny < ngy; for all & and, hence,
that (fn,) is a subsequence of (f,) for which

M({x € A||fn.(x) = f(z)| > Zik}) - 2%

for every k > 1. We set
1 .
Bi={e € Allfu(@) = @] 2 5}, Fu=Ui%,Br.

Then pu(F) < 302% o = gy for every m.

If 2 € A\ F,,, then z € A\ Ey, for every k > m so that |f,, (z) — f(z)] < 5=
for every k > m. This implies that

Sup  |fe () — F(2)] <

k
z€EA\F, 2

for all & > m and hence sup,¢ 4\ ,, | fni (z) — f(2)] — 0 as k — +oc. Therefore,

(fn,) converges to f uniformly on A\ F,, and we conclude that (f,,) converges
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to f almost uniformly on A.

Example

We consider the example just after Theorem 9.1. The sequence ( f,,) converges to
0 in measure on (0, 1) but it does not converge to 0 almost uniformly on (0,1). In
fact, if we take any ¢ with 0 < § < 1, then every B C (0,1) with m4((0,1)\ B) <
0 must have non-empty intersection with infinitely many intervals of the form
(=L k) (at least one for every value of m) and, hence, sup,p | fn(z)| > 1 for

rm '7 m
infinitely many n.

The converse in Theorem 9.6 is a variant of the Dominated Convergence
Theorem.

Theorem 9.6 If (f,) converges to f in the mean on A, then (f,) converges to
f in measure on A.

The converse is true under the additional assumption that there exists a
g:X —[0,400] so that [, gdu < +oo and |fn| < g a.e. on A.

Proof: 1t is clear that we may assume all f, f,, are finite on A.
Suppose that (f,) converges to f in the mean on A. Then, for every ¢ > 0
we have

il € Allfa(o) = f@)] > ) < ¢ [ 1= flau—0

as n — +o00. Therefore, (f,,) converges to f in measure on A.
Assume that the converse is not true. Then there is some ¢y > 0 and a
subsequence (fy, ) of (f) so that

/ o — fldp > o
A

for every k > 1. Since (fy, ) converges to f in measure, Theorem 9.2 implies that
there is a subsequence (fnkl) which converges to f a.e. on A. From |fnkl\ <g
a.e. on A, we find that |f| < g a.e. on A. Now, the Dominated Convergence
Theorem implies that

[ 1w = fld =0
A
as | — +o00 and we arrive at a contradiction.

Example
Let fn = nx(,1) for every n. If 0 < e <1, then p({z € (0,1)[[fn(z)] > €}) =

1 — 0 as n — +o0o and, hence, (f,) converges to 0 in measure on (0,1). But

fol | fn(x)] dmi(z) =1 and (f,) does not converge to 0 in the mean on (0,1).
If g : (0,1) — [0, 400] is such that | f,| < g a.e. on (0,1) for every n, then g >

n a.e. in each interval [-1=, 1). Hence, fol g(x) dmy (z) > 327 " ndmy(z) =

ntl’n T
+o0 1 1 _ oo 1
n=1 (E - n+1) — Zun=1 n+1 — +o0.
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9.6 Exercises.

Except if specified otherwise, all exercises refer to a measure space (X, 3, u), all
sets belong to ¥ and all functions are Y-measurable.

1.

Let ¢ : C — C.

(i) If ¢ is continuous and (f,,) converges to f a.e. on A, prove that (¢o f,)
converges to ¢ o f a.e. on A.

(ii) If ¢ is uniformly continuous and (f,) converges to f in measure or
almost uniformly on A, prove that (¢ o f,,) converges to ¢ o f in measure
or, respectively, almost uniformly on A.

(i) If (f,) converges to f with respect to any of the four types of conver-
gence (a.e. or in the mean or in measure or almost uniformly) on A and
(fn) converges, also, to f’ with respect to any other of the same four types
of convergence, prove that f = f’ a.e. on A.

(ii) If (f,) converges to f with respect to any of the four types of conver-
gence on A and |f,| < g a.e. on A for all n, prove that |f| < g a.e. on
A.

If E,, C A for every n and (xg, ) converges to f in the mean or in measure
or almost uniformly or a.e. on A, prove that there exists £ C A so that
f=xg a.e. on A.

Suppose that E,, C A for every n. Prove that (xg,) is Cauchy in measure
or in the mean or almost uniformly on A if and only if u(E,AE,,) — 0
as n, m — +00.

Let # be the counting measure on (N, P(N)). Prove that (f,) converges
to f uniformly on N if and only if (f,) converges to f in measure on N.
A wvariant of the Lemma of Fatou.

If f,, > 0 a.e. on A and (f,) converges to f in measure on A, prove that
S fdp <liminf, . [, fndp.

The Dominated Convergence Theorem.

Prove the Dominated Convergence Theorem in two ways, using either the
first converse or the second converse of Theorem 9.4.

A wariant of the Dominated Convergence Theorem.

Suppose that |f,| < g a.e. on A, that ngdu < +oo and that (f,)
converges to f in measure on A. Prove that [, fndu — [, fdpu.

One can follow three paths. One is to use the result of Exercise 9.6.2.
Another is to reduce to the case of a.e. convergence and use the original
version of the theorem. The third path is to use almost uniform conver-
gence.
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10.

11.

12.

13.

14.

15.

16.

Suppose that A is of o-finite measure and (f,,) converges to f a.e. on A.
Prove that, for each k, there exists Ey C A so that (f,) converges to f
uniformly on Ej, and p(A\ Uf2SEy) = 0.

Suppose that Ey(e) = {z € A||fr(x) — f(x)] > €} for every k and € > 0.
If u(A) < 400, prove that (f,) converges to f a.e. on A if and only if, for
every € > 0, u(Uf° Ej(e)) — 0 as n — +oc.

(i) Let (hy,) satisfy sup,en |hn(x)| < co for ae. z € A. If p(A) < +o0,
prove that for every § > 0 there is a B C A with u(A\ B) < ¢ so that
SUP,e B nen | ()| < 400,

(ii) Let (f,) converge to f in measure on A and (g,) converge to g in
measure on A. If u(A) < +oo, prove that (f,g,) converges to fg in
measure on A.

Suppose that p(A) < +o00 and every f, is finite a.e. on A.

(i) Prove that there is a sequence (\,,) of positive numbers so that (A, f,,)
converges to 0 a.e. on A.

(ii) Prove that there exists g : A — [0, +oc] and a sequence (r,,) in RT so
that |f,| < r,g a.e. on A for every n.

Suppose that u(A) < +o0o and (f,) converges to 0 a.e. on A.

(i) Prove that there exists a sequence (\,,) in R™ with A, T +oo so that

(Anfrn) converges to 0 a.e. on A.

(i) Prove that there exists g : A — [0,+00] and a sequence (e,) in R

with €, — 0 so that |f,| < e,g a.e. on A for every n.

A characterisation of convergence in measure.

If u(A) < 400, prove that (f,) converges to f in measure on A if and only
| fn—f]

iffAmduHOasne—i—oo.

In general, prove that (f,,) converges to f in measure on A if and only if

Tz € Allfale) — f(z)| = €})
>01+e+ p({z € Al|fu(z) — f(2)] > €})

as n — —+00.

— 0

A wariant of Egoroff’s Theorem for continuous parameter.

Let u(X) < 400 and f: X x [0,1] — C has the properties:
(a) f(-,y) : X — C is measurable for every y € [0, 1]
(b) f(z,-):[0,1] — C is continuous for every z € X.

(i) If €,n > 0, prove that {z € X ||f(x,y) — f(z,0)] < eforally < n}
belongs to .

(ii) Prove that for every § > 0 there is B C X with pu(X \ B) < ¢ and
f(G,y) — f(-,0) uniformly on B as y — 0+.

Let (fn) converge to f in measure on A. Prove that Af, (t) — Ag(t) for
every ¢ € [0, 400) which is a point of continuity of A;.
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17.

18.

19.

20.

Prove the converse part of Theorem 9.6 using the converse part of Theorem
9.5.

The complete relation between convergence in the mean and convergence
in measure: the Theorem of Vitali.

We say that the indefinite integrals of (f,) are uniformly abso-
lutely continuous over A if for every € > 0 there exists § > 0 so that
| [z fndp| < eforalln>1and all EC A with pu(E) < 4.

We say that the indefinite integrals of (f,,) are equicontinuous from
above at () over A if for every sequence (Ej) of subsets of A with Ej, | ()
and for every € > 0 there exists kg so that ‘fEk frndu| < efor all k > kg
and all n > 1.

Prove that (f,) converges to f in the mean on A if and only if (f,)
converges to f in measure on A and the indefinite integrals of (f,) are

uniformly absolutely continuous on A and equicontinuous from above at
0 on A.

How is Theorem 9.6 related to this result?

The Theorem of Lusin.

If f is Lebesgue measurable and finite a.e. on R", then for every § > 0
there is a Lebesgue set B C R™ and a g, continuous on R", so that
my,(B€) < § and f =g on B.

(i) Use Theorem 7.16 to find a sequence (¢,,) of functions continuous on
R™ so that fR" |f — ¢&n|dm, — 0 as n — +00. Theorem 9.1 implies that
there is a subsequence (¢, ) which converges to f a.e. on R™.

(ii) Consider the qubes Qm, ....m,, = [M1,m1 +1) X -+ X [my, my, + 1) for
every choice of my,...,m, € Z and enumerate them as @1, Qs,.... Then,
these qubes are pairwise disjoint and they cover R™. Apply Egoroff’s
Theorem to prove that for each @ there is a closed set By C @ with
mp(Qr\Br) < 2% so that (¢, ) converges to f uniformly on Bj,. Conclude
that the restriction f]Bj of f on By is continuous on Bj.

(iii) Take B = U; > By, and prove that m,,(B¢) < §, that B is closed and
that the restriction f]B of f on B is continuous on B.

(iv) Use the Extension Theorem of Tietze to prove that there is a g,
continuous on R", so that g = f|B on B.

If f:R™ — C is continuous in each variable separately, prove that f is
Lebesgue measurable.
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Chapter 10

Signed measures and
complex measures

10.1 Signed measures.

Let (X,X) be a measurable space.

Definition 10.1 A functionv : ¥ — R is called a signed measure on (X,Y)
if

(i) either v(A) # —oo for all A € ¥ or v(A) # +oo for all A € X,

(i1) v(0) =0,

(i41) I/(U;_:OTAJ‘) = Zj_:f v(A;) for all pairwise disjoint Ay, Ag,... € X.

If v is a signed measure on (X,Y) and v(A) € R for every A € X, then
v is called a real measure. It is obvious that v is a non-negative signed
measure (i.e. with v(A) > 0 for every A € ¥) if and only if v is a measure. If
v(A) <0 for every A € X, then v is called a non-positive signed measure.

It is clear that, if v is a non-negative signed measure, then —v is a non-
positive signed measure and conversely. Also, if v and v/ are signed measures
on (X,X) with either v(A),V/ (A) # —oo for all A € ¥ or v(A),V'(4) # 400
for all A € ¥, then v + v/, well-defined by (v + v')(A) = v(4) + v/ (A) for all
A € %, is a signed measure. Similarly, the kv, defined by (kv)(A) = kv (A) for
all A € X, is a signed measure for every x € R.

Examples
1. Let pp,p2 be two measures on (X,X). If pua(X) < +oo, then ps(A) <
pa(X) < 400 for every A € . Then, v = g — po is well-defined and it is a
signed measure on (X, Y), because v(A) = p1(A) — pa(A4) > —p2(A) > —oo for
all A € . Similarly, if 41 (X) < +o00, then v = 1 — o is a signed measure on
(X,3) with v(A) < oo for all A € %.

Hence, the difference of two measures, at least one of which is finite, is a
signed measure.
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2. Let p be a measure on (X,¥) and f : X — R be a measurable function such
that the [, fdu is defined. Lemma 7.10 says that the [, fdu is defined for
every A € ¥. If we consider the function A : ¥ — R defined by

&®=Afw

for all A € ¥, then Proposition 7.6 and Theorem 7.13 imply that A is a signed
measure on (X, ¥).

Definition 10.2 The signed measure \ which is defined in the previous para-
graph is called the indefinite integral of f with respect to pn and it is
denoted by fu. Thus, the defining relation for fu is

()= [ fan 4.

In case f > 0 a.e. on X, the signed measure fu is a measure, since (fu)(A) =
fAfdu > 0 for every A € ¥. Similarly, if f < 0 a.e. on X, the fu is a non-
positive signed measure.

Continuing the study of this example, we shall make a few remarks. That
the [y fdp is defined means either [, fdu < 400 or [ f~du < +oo.

Let us consider the case [ f du < 400 first. Then the signed measure f*p
is a finite measure (because (f™p)(X) = [y f*dp < 4+00) and the signed mea-
sure f~pu is a measure. Also, for every A € ¥ we have (fTp)(A) — (f~u)(A) =
JafTdp— [, f dp= [, fdu= (fu)(A). Therefore, in the case [, f*du <
+00, the signed measure fu is the difference of the measures f*u and f~dpu, of
which the first is finite:

fu=fTp—fp

Similarly, in the case fX f~dp < +o00, the signed measure fu is the dif-
ference of the measures f™p and f~p, of which the second is finite, since
(f~m(X) = [ [~ dp < +o0.

Property (iii) in the definition of a signed measure v is called the o-additivity
of v. It is trivial to see that a signed measure is also finitely additive.

A signed measure is not, in general, monotone: if A, B € ¥ and A C B, then
B =AU(B\ A) and, hence, v(B) = v(A)+v(B\ A), but v(B\ A) may not be
>0!

Theorem 10.1 Let v be a signed measure on (X, ).

(i) Let A/B € ¥ and A C B. If v(B) < +oo, then v(A) < +oco and, if
v(B) > —oo, then v(A) > —co. In particular, if v(B) € R, then v(A) € R.

(1) If A,Be X, AC B and v(A) € R, then v(B\ A) = v(B) — v(A).

(iii) (Continuity from below) If Ay, Ag,... € ¥ and A,, C A,41 for all n, then
V(U A,) = limy, oo v(Ay).

(i) (Continuity from above) If Ay, Ay, ... €3, V(A1) ER and A, 2 Apiq for
all n, then v(NF2A,) = limy, 1o v(Ay).
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Proof: (i) We have v(B) =v(A) +v(B\ A).

If v(A) = +oo, then v(B\ A) > —oo and, thus, v(B) = +o00. Similarly, if
v(A) = —o0, then v(B \ A) < +o00 and, thus, v(B) = —o0.

The proofs of (ii), (iii) and (iv) are the same as the proofs of the correspond-
ing parts of Theorem 2.1.

10.2 The Hahn and Jordan decompositions, I.

Let (X,X) be a measurable space.

Definition 10.3 Let v be a signed measure on (X,X).

(i) P € X is called a positive set for v if v(A) >0 for every Ac ¥, AC P.
(ii) N € X is called a negative set for v if v(A) <0 for every Ac ¥, ACN.
(i1i) Q € X is called a null set for v if v(A) =0 for every A€ X, AC Q.

It is obvious that an element of ¥ which is both a positive and a negative
set for v is a null set for v. It is also obvious that, if u is a measure, then every
A € ¥ is a positive set for p.

Proposition 10.1 Let v be a signed measure on (X,X).

(i) If P is a positive set for v, P’ € &, P' C P, then P’ is a positive set for v.

(ii) If Py, Py, ... are positive sets for v, then U2 Py, is a positive set for v.
The same results are, also, true for negative sets and for null sets for v.

Proof: (i) For every A € ¥, A C P’ we have A C P and, hence, v(A) > 0.

(ii) Take arbitrary A € ¥, A C U/ P,. We can write A = U2 Ay, where
Ay, Ay, ... € 3 are pairwise disjoint and Ay C Py for every k. Indeed, we may
set Ay = ANP; and A, = AN (Pk\(PlLJn-UPk_l)) for all £ > 2. By the
result of (i), we then have v(A) = 3225 v(4y) > 0.

Theorem 10.2 Let v be a signed measure on (X,X).

(i) There exist a positive set P and a negative set N for v so that PUN = X
and PN N = ().

(i) v(N) < v(A) < v(P) for every A € X.

(iii) If v(A) < +oo for every A € X, then v is bounded from above, while if
—o00 < V(A) for every A € X, then v is bounded from below.

(iv) If P’ is a positive set for v and N' is a negative set for v with PPUN' = X
and P' NN’ =0, then PAP' = NAN' is a null set for v.

Proof: (i) We consider the case when v(A) < 400 for every A € 3.
We define the quantity

k = sup{v(P) | P is a positive set for v}.

This set is non-empty since (@) = 0 is one of its elements. Thus, 0 < k. We
consider a sequence (Py) of positive sets for v so that v(Py) — x and form the
set P = U;C";"{Pk which, by Proposition 10.1, is a positive set for v. This implies
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that v(P\ P) > 0 for every k and, hence, v(Py;) < v(P) < & for every k. Taking
the limit, we find that
Kk =v(P) < 4o0.

This P is a positive set for v of mazimal v-measure and we shall prove that the
set N = X \ P is a negative set for v.

Suppose that N is not a negative set for v. Then there is Ay € 3, Ag C N,
with 0 < v(A4g) < 4o0o. The set Ap is not a positive set or, otherwise, the
set P U Ag would be a positive set with v(P U Ag) = v(P) + v(Ag) > v(P),
contradicting the maximality of P. Hence, there is at least one subset of Ag in
¥ having negative v-measure. This means that

To = 1nf{1/(B) |B €, BC Ao} < 0.

If 9 < —1, there is By € X, B; C Ay with V(Bl) < -1. If -1 <71 < 0,
there is a By € X, By € Ag with v(By) < 3. We set A} = Ag \ By and have
v(Ag) = v(41) + v(B1) < v(A1) < +00. Observe that we are using Theorem
10.1 to imply v(A;),v(B1) € R from v(A4p) € R.

Suppose that we have constructed sets Ag, A1,..., 4, € ¥ and By,...,B, €
> so that

< AngAn—lggAlnggNa Bn:An—l\Ana"'aBleO\Ala
O Tp—1 = 1nf{1/(B) |B €, BC Ak—l} <0,
-1, if g < —1
o V(B]g)<{7—k217 if 1 <7y <0 forallk=1,...,n,
o 0<v(dy) <v(dy) <---<v(dp_1) <v(4,) < +oo.

Now, A, is not a positive set for v for the same reason that Ay is not a
positive set for v. Hence, there is at least one subset of A,, in ¥ having negative
v-measure. This means that

™, =inf{v(B)|Be £,BC A,} <0.

If 7, < —1, there is Bp41 € X, Bpy1 C A, with v(Byy1) < —1. If -1 < 7, <0,
thereis a Bpy1 € ¥, Byy1 C A, with v(B,41) < 3. Weset A1 = A, \ Brya
and have v(4,) = v(Ant1) + ¥(Bny1) < v(Apy1) < +oo. This means that
we have, inductively, constructed two sequences (A,), (B,) satisfying all the
properties ©.

Now, the sets By, Ba,... and N> A, are pairwise disjoint and we have
Ag = (N A,) U (U2 B,). Therefore, v(Ag) = v(NfSA,) + S v(B,),

from which we find
“+o00

Z v(By) > —0.

n=1

This implies that v(B,,) — 0 as n — 400 and, by the third property o,

Thn—1 — 0
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as n — +o00. Now the set A =N1>] A, € ¥, by continuity from above of v, has

v(A) = nEI—&I-loo v(A,) > 0.
Moreover, A is not a positive set for v for the same reason that Ag is not a
positive set for v. Hence, there is some B € 3, B C A with v(B) < 0. But then
B C A, for all n and, hence, 7,,_1 < v(B) < 0 for all n. We, thus, arrive at
a contradiction with the limit 7,,_; — 0.

In the same way, we can prove that, if —co < v(A) for every A € ¥, then
there is a negative set N for v of minimal v-measure so that the set P = X \ N
is a positive set for v.

Thus, in any case we have a positive set P and a negative set N for v so
that PUN = X and PN N = ().

(ii) If A € %, then v(P\ A) > 0, because P\ A C P. This implies v(P) =
v(PNA)+v(P\A) >v(PNA) and, similarly, v(N) < v(N N A). Therefore,
v(A) =v(PNA)+v(NNA) < v(PNA) <v(P)and v(A) = v(PNA)+v(NNA) >
v(NNA)>v(N).

(iii) This a consequence of the result of (ii).

(iv) Now, let P’ be a positive set and N’ be a negative set for v with PPUN’' = X
and PN N’ = (. Then, since P\P' = N'\N C PNN’, theset P\ P' = N'\N
is both a positive set and a negative set for v and, hence, a null set for v.
Similarly, P\ P = N \ N’ is a null set for v and we conclude that their union
PAP = NAN' is a null set for v.

Definition 10.4 Let v be a signed measure on (X,X). FEvery partition of X
into a positive and a negative set for v is called a Hahn decomposition of X
for v.

It is clear from Theorem 10.2 that if P, N is a Hahn decomposition of X for
v, then

v(P) = max{v(4)| A € X}, v(N) =min{v(A)| A € I}.

Definition 10.5 Let vq, v, be two signed measures on (X,3). We say that they
are mutually singular (or that vy is singular to vy or that vs is singular to
v1) if there exist Ay € X which is null for v and As € ¥ which is null for vy
so that A1 U Ay = X and Ay N Ay = 0.

We use the symbol v1Llvs to denote that vy, ve are mutually singular.

In other words, two signed measures are mutually singular if there is a set
in X which is null for one of them and its complement is null for the other.

If v1, 19 are mutually singular and A;, As are as in the Definition 10.5, then
it is clear that

lll(A) = lll(A n Al), I/Q(A) = I/Q(A N AQ)

for every A € ¥. Thus, in a free language, we may say that vy is concentrated
on A and vy is concentrated on As.

187



Proposition 10.2 Let v,v1,vs be signed measures on (X,%). If vi,vslv and
v, + vs is defined, then vy + vo lv.

PTOOf.' Take Al,Bl,AQ,BQ € Y so that AiUB; = X = A, U BQ, AiNB =
) = As N By, Ay is null for vq, Ay is null for vy and By, By are both null for v.
Then B; U By is null for v and Ay N Ay is null for both v; and v and, hence,
for 11 + v5. Since (A1 N Ag) U (Bl U Bg) = X and (A1 N AQ) N (Bl U BQ) = @,
we have that 11 + o Lv.

Theorem 10.3 Let v be a signed measure on (X,X). There exist two non-
negative signed measures (i.e. measures) vt and v, at least one of which is
finite, so that

+

v=v" —v vtily~

If p1, po are two measures on (X, X), at least one of which is finite, so that
v =1 — po and p1Lps, then py = v+ and ps = v=.

Proof: We consider any Hahn decomposition of X for v: P is a positive set and
N a negative set for v so that PUN = X and PN N = (.
We define v+, v~ : ¥ — [0, +00] by

vT(A) =v(ANP), v (A)=-v(ANN)

for every A € ¥. It is trivial to see that v, v~ are non-negative signed measures
on (X,%). If v(A) < +oo for every A € 3, then v (X) = v(P) < 400 and,
hence, v is a finite measure. Similarly, if —oco < v(A) for every A € ¥, then
v~ (X) = —v(N) < 400 and, hence, v~ is a finite measure.

Also, v(A) = v(ANP)+v(ANN) =vt(A)—v (A) for all A € ¥ and, thus,
v=vt—v.

If Ae X and A C N, then v (A) = v(ANP) = v(D) = 0. Therefore, N is a
null set for . Similarly, P is a null set for v~ and, hence, v Ly~

Now, let w1, 1o be two measures on (X, X), at least one of which is finite,
so that v = p; — po and py Lps. Consider A, Ay € X, with A3 U Ay = X and
A; N Ay =0, so that Ay is a null set for u; and A is a null set for ps.

If Ae X AC Ay then v(A) = p1(A) — p2(A) = —p2(A) < 0 and, if
A C Ay, then v(A) = pu1(A) — p2(A) = p1(A) > 0. Hence, Ay, Ay is a Hahn
decomposition of X for v. Theorem 10.2 implies that A; AP = A3AN is a null
set for v. Therefore, for every A € X, we have 1 (A) = p1 (ANA1)+p1(ANAg) =
,U,l(AﬂAl) = Ml(AﬂAl) —,u,g(AﬁAl) = V(AﬂAl) = V(AﬂAl ﬁP) +V(Aﬂ
AiNN) =v(ANA; NP), since AN A3 NN C A AP. On the other hand,
vi(A) =v(ANP)=v(ANA NP)+v(ANAyNP) =v(AN A; N P), since
ANAsNP C A AN. From the two equalities we get py(A) = vt (A) for every
A € ¥ and, thus, 1 = v*. We, similarly, prove ps = ™.

Definition 10.6 Let v be a signed measure on (X,X). We say that the pair of
mutually singular measures v, v~ , whose existence and uniqueness is proved in
Theorem 10.3, constitute the Jordan decomposition of v.

vt is called the positive variation of v and v~ is called the negative
variation of v.
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The measure |v| = v + v~ is called the absolute variation of v, while
the quantity |v|(X) is called the total variation of v.

Observe that the total variation of v is equal to
v|(X) = vH(X) + v (X) =v(P) - v(N),

where the sets P, N constitute a Hahn decomposition of X for v. Hence, the
total variation of v is equal to the difference between the largest and the smallest
values of v.

Moreover, the total variation is finite if and only if the absolute variation is
a finite measure if and only if both the positive and the negative variations are
finite measures if and only if the signed measure takes only finite values.

Proposition 10.3 Suppose i is a measure on (X,3), f : X — R is measurable
and [y fdp is defined. Then the sets P = {x € X | f(z) > 0} and N = {z €
X | f(z) < 0} constitute a Hahn decomposition of X for the signed measure fp.
Also,

(= tu  (fw)” =fn

constitute the Jordan decomposition of fu and

[ful = |flp-
Proof: IfAeEandACP then (fu)(A) = [, fdu > 0, while, if A C N,
then (fu)(A) = [, fdu < 0. Therefore, P is a positive set for fu and N is a

negative set for fu. Since PUN = X and PN N = (), we conclude that P, N
constitute a Hahn decomposition of X for fu.

Now, (fu)*(A) = (fW(ANP) = [yopfdu = [y fxpdp = [, f*dp =
(F+)(A) and, similarly, (f1)~(A) = (FNANN) = oy Fdi = 4 Povdp =
Ju fmdp=(f"p)(A) for every A e 3.

Therefore, (fu)™ = ftup and (fu)~ = fp.

Now, |ful = (fi)* + (fu)” = fru+ f~u=|flu

It is easy to see that another Hahn decomposition of X for fu consists of
the sets P/ ={z € X | f(z) >0} and N' = {z € X | f(z) <O0}.

Proposition 10.4 Suppose i is a measure on (X,3), f : X — R is measurable
and [ fdp is defined. Let E € 3.

(i) E is a positive set for fu if and only if f >0 a.e. on E.

(ii) E is a negative set for fu if and only if f <0 a.e. on E.

(iii) E is a null set for fu if and only if f =0 a.e. on E.

Proof: (i) Let f > 0 a.e. on E and take any A € X, A C E. Then f > 0
a.e. on A and, hence, (fu)(A) = [, fdp > 0. Thus, E is a positive set
for fu. Suppose, conversely, that E is a positive set for fpu. If n € N and
A, ={z € E|f(z) < -1}, then 0 < (fu)(A = [y, fdu <~ 1,(Ay). This
implies that u(A,) = 0 and, since {x € E| f( ) < 0} = Ul A, we conclude
that u({z € E| f(z) < 0}) = 0. This means that f > 0 a.e. on E.
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The proof of (ii) is identical to the proof of (i), and (iii) is a consequence of
the results of (i) and (ii).

We recall that, for every a € R, the positive part of a and the negative part
of a are defined as

at = max{a, 0}, a” = —min{a, 0}

and, hence,

a=a"—a", la| =at +a”.

It is trivial to prove that
(a+b)t <at+0b", (a+b)” <a” +0b
for every a,b € R for which a + b is defined.

Definition 10.7 Let A € . If Ay,..., A, € ¥ are pairwise disjoint and A =
Up_, Ak, then {Aq,..., A} is called a (finite) measurable partition of A.

Theorem 10.4 Let v be a signed measure on (X,X) and let |v|,v" and v~ be
the absolute, the positive and the negative variation of v, respectively. Then, for
every A € X,

n

lv|(A) = { Z lv(Ag)||n € N, {A1,..., An} measurable partition of A},
{ v(Ap)T|n € N,{Aq,..., A,} measurable partition of A},

v~ (A) =sup { v(Ag)” |n € N,{A,..., A} measurable partition of A}.

Proof: We let P, N be a Hahn decomposition of X for v. For every pairwise
disjoint Ay,..., A, € ¥ with U}_; A, = A we have that

Z Ak |_Z‘I/ Ak —V Ak |<Zl/ Ak zn:l/_(Ak)
k=1 k=1
=v (A)+V (4) = [v|(A).

Therefore, the supremum of the left side is < |v|(A). On the other hand,
{ANP,AN N} is a particular measurable partition of A for which [v(AN P)|+
[W(ANN)|=v(ANP)—v(ANN)=vT(A)+ v (A) = |v|(A) and, hence, the
supremum is equal to |v|(A).

The proofs of the other two equalities are identical.

Lemma 10.1 Let v be a signed measure on (X,3) and A € . Then, A is a
null set for v if and only if it is a null set for both vt v~ if and only if it is a
null set for |v|.
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Proof Since |v| = v 4+ v~ the second equivalence is trivial.

Let A be null for |v|. For every B € X, B C A, we have that |v(B)| =
v (B) —v=(B)| < v"(B) + v~ (B) = |v|(B) = 0. Hence, v(B) = 0 and A is
null for v.

Let A be null for v. If {A;,..., A,} is any measurable partition of A, then
v(Ag) = 0 for all k and, hence, >_;_, [v(Ax)| = 0. Taking the supremum of the
left side, Theorem 10.4 implies that |v|(4) = 0 and, thus, A is null for |v|.

Proposition 10.5 Let 11 and vo be two signed measures on (X,%). Then 1y
and vy are mutually singular if and only if each of vy ,vy and each of vy vy
are mutually singular if and only if |v1| and |va| are mutually singular.

Proof: The proof is a trivial consequence of Lemma 10.1.

Proposition 10.6 Let v,vy,ve be signed measures on (X,¥) and x € R. If
V1 + vy is defined, we have

[ + vo| < |vi| + |val, |kv| = [K|[v].

Proof: We take an arbitrary measurable partition {A;,..., A,} of A € ¥ and we
have S0 (01 +v2)(A1)| < Sy [ (AR + 3y s (Ag)] < [y |(A) +lwsl ().
Taking the supremum of the left side, we find |11 + v2|(4) < |v1|(A) + |v=2|(A).

In the same manner, > ,_, |[(kv)(Ag)| = |6 > p_; [¥(Ax)|. This equality
implies Y 7_, [(kv)(Ax)|] < |&||v|(A) and, taking supremum of the left side,
|kv|(A) < |k||v|(A). The same equality, also, implies |kv|(A) > |k| > r_; [V(A)]
and, taking supremum of the right side, |xv|(A4) > |k||[v|(A).

10.3 The Hahn and Jordan decompositions, 1I.

In this section we shall describe another method of constructing the Hahn and
Jordan decompositions of a signed measure. In the previous section we derived
the Hahn decomposition first and, based on it, we derived the Jordan decom-
position. We shall, now, follow the reverse procedure.

Let (X,X) be a measurable space.

Definition 10.8 Let v be a signed measure on (X,%). For every A € ¥ we
define

|v|(A) = sup { Z [v(Ag)||n € N,{A1,..., A,} measurable partition of A},
k=1

v (A) = sup { Z v(Ap)T |n € N, {Ay,..., A,} measurable partition of A},
k=1

v~ (A) = sup { Z v(Ag)" |n € N,{Ay,..., A,} measurable partition of A}.
k=1
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Lemma 10.2 Let v be a signed measure on (X,3). Then,
v (A)+ v (4) = [v[(4)
and
vH(A) =sup{v(B)|BeX,BC A}, v (A)=-inf{v(B)|Be€X,BC A}
for every A € X.

Proof: (a) Take any A € ¥ and any measurable partition {A;,...,A,} of A.
Then,

n

DA =) v(A)T Y v(A)T S vH(A) + v (A).
k=1

k=1 k=1

Taking the supremum of the left side, we get |v|(A4) < vT(A) + v~ (A).
Now take arbitrary partitions {Ai,...,A,} and {4],..., A’} of A. Then

; Ak+<z<z (4N 45)*),

k=1 k'=1
n/ n, n
k'=1 k'=1 k=1

and, adding,

D ov(A)T+ Y v(dy) < Y. (An 4yl

k=1 k=1 1<k<n,1<k'<n’

Since {4y N AL, |1 <k <n,1 <k <n'} is a measurable partition of A, we get

Z (Ap)* +z (A,) < |v|(A).

k'=1

Finally, taking the supremum of the left side, we find v (A) + v~ (4) < |v|(A).
(b) If B € ¥ and B C A, then {B, A\ B} is a measurable partition of A
and, hence, v(B) < v(B)* < v(B)T +v(A\ B)T < vt(A). This proves that
sup{v(B)|B € ,B C A} <vt(A4).

Let {A4;,...,A,} be any measurable partition of A. If A;,,..., A; are ex-
actly the sets with non-negative v-measure and if By = U, A;, C A, then
S v(A)t = X v(A;) = v(By). This implies that Y p_, v(Ax)T <
sup{v(B)|B € £, B C A} and, hence, v*(A) < sup{v(B)|B € %, B C A}.

We conclude that v*(A) = sup{v(B)|B € ¥,B C A} and a similar argu-
ment proves the last equality.
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Theorem 10.5 Let v be a signed measure on (X,X). Then, the functions
lvl, v, v : ¥ — [0, +00], which were defined in Definition 10.8, are measures
on (X,%).

At least one of v, v~ is finite and

vt —v =y, vt v =y, vtiv.
Proof: (a) We shall first prove that |v| is a measure.

It is obvious that |v|(#) = 0 and take arbitrary pairwise disjoint A!, A%, ... €
Y and A = sz‘xl’Aj.

If {Ay,...,A,} is an arbitrary measurable partition of A, then, for every
g, {A1 N AT ... A, N AT} is a measurable partition of A7. This implies,
Mo V(AR = Yo IS (A 0 AT < ST (075 Iv(Ak 0 AT)]) =

;r:of (Xpei V(A n AT)]) < ;r:o‘f v|(A7) and, taking the supremum of the
left side, [v](A) < 32177 [v](A7).

Fix arbitrary N € N and for every j = 1,..., N take any measurable par-
tition {A7,..., 47 } of A7. Then {Af,..., AL ..., AY, ... A} U5 A7}
is a measurable partition of A and, hence, |v|(A4) > Zjvzl (Sri, v(AD]) +
(US4 A7) > S8 (02, [v(A])]). Taking the supremum of the right
side, we get |v|(A) > Zjvzl |V|(A7) and, taking the limit as N — oo, we find
v](A) = 3275 [v|(4).

Hence, [v|(A) = >/77 [v](A7).

The proofs that v+ and v~ are measures are identical to the proof we have
just seen.

(b) In case v(A) < oo for every A € 3, we shall prove that v1(X) < +oc.

We claim that for every A € ¥ with v+ (A) = +oc and every M > 0, there
exists B€ X, B C A, so that v (B) = 400 and v(B) > M.

Suppose that the claim is not true. Then, there is A € ¥ with vT(4) = +co
and an M > 0 so that, if B € ¥, B C A, has v(B) > M, then v*(B) <
+00. Now, by Lemma 10.2, there is B; € ¥, By C A with v(B;) > M and,
hence, vT(B;) < +oco. Suppose that we have constructed pairwise disjoint
Bi,...,B,, € ¥ subsets of A with v(B;j) > M and v*(B;) < +oo for every
j=1,...,m. Since v* is a measure, we have 7", v*(B;) +v(A\UJL, B)) =
vT(A) = 400 and, thus, v (4 \ UYL, B;) = +oo. Lemma 10.2 implies that
there is By41 € X, By © A\ UJLyB; with v(By,11) > M and, hence,
l/+(B”L+1) < +o00.

We, thus, inductively construct a sequence (B,,) in X of pairwise disjoint
subsets of A with v/(B,,) > M. But, then, v(U}1® B,,) = S0 v(B,,) = +o0
and we arrive at a contradiction.

Using the claimed result and assuming that v (X) = +o0, we find B! € &
with v(B') > 1 and v+ (B') = +00. We, similarly, find B? € ¥, B2 C B!, with
v(B?%) > 2 and v*(B?) = +00. Continuing inductively, a decreasing sequence
(B™) is constructed in ¥ with v(B™) > m for every m. Then, v(NXB!) =
limy,— 400 ¥(B™) = 400 and we arrive at a contradiction.
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Therefore, v (X) < +o00.

If —oco < v(A) for every A € X, we prove in the same way that v~ (X) < +o0.
(c) Suppose that v(A) < +oo for every A € 3 and, hence, v+ (X) < 400, by
the result of (b).

We take any A € ¥ and any B € ¥, B C A. Then v(A\ B) < v (A)
and, hence, v(A) < v (A) + v(B). Taking the infimum over B and using the
vT(A) < +oo, we get v(A) <vT(A) — v (A).

To prove the opposite inequality, we first assume v~ (A4) < +oo. For every
Be X, BCA, wehave —v~(A) <v(A\ B) and, hence, v(B) — v~ (A4) < v(A).
Taking the supremum over B we find v+ (A4) — v~ (A) < v(A). If v~ (A) = +oo,
then, since v+ (A) < 400, the vT(A) — v~ (A) < v(A) is clearly true.

We conclude that v(A) = vT(A) — v~ (A) for every A € ¥ and the same can
be proved if we assume that —oco < v(A) for every A € X.

Therefore, v = vt —v~.

(d) The equality |v| = v + v~ is contained in Lemma 10.2.
(e) We, again, assume v(A) < +oo for every A € ¥ and, hence, v (X) < +o0.

Using Lemma 10.2, we take a sequence (B,,) in ¥ so that v(B,) — v (X) as
n — +oo. Since v(B,,) < v (B,) < v (X), we have that v*(B,) — v (X) as
n — +oo. From v(B,) = v (B,) — v~ (B,), we get v (B,) — 0 as n — +oo.

We find a strictly increasing (ny) so that v~ (B, ) < 5 for all k. If we set
Fj, = U5 By, then v (Fy) < Zlio,j v (By,) < g for every k and (Fy) is
decreasing. Therefore, the set F' = ﬂ;;"iFk has v~ (F) = 0. We, also, have
that v1(B,,) < v (Fg) < vT(X) and, hence, v (F)) — v (X) as k — +oc.
Therefore, v+ (F) = vt (X).

We have constructed a set F' € ¥ so that v~ (F) = 0 and v*(F) = v (X).
Since v (X) < 400, we find v(X \ F) = 0 and we conclude that v Ly~

The decomposition v = v+ — v~ of the signed measure v on (X, Y), which is
given in Theorem 10.5, is the same as the Jordan decomposition of v, which was
defined in the previous section 10.2. This is justified both by the uniqueness
of the Jordan decomposition of a signed measure and by the result of Theo-
rem 10.4. Using, now, the Jordan decomposition, we shall produce the Hahn
decomposition of a signed measure.

Theorem 10.6 Let v be a signed measure on (X, X)) and v, v~ be the measures
of Definition 10.8. Then, there exist PN € ¥ so that PUN = X, PN N = (),
P is a positive set for v, N is a negative set for v and vt (N) =0,v"(P) = 0.

Proof: Theorem 10.5 implies that v™ Ly~ and, hence, there are P, N € ¥ so
that PUN =X, PN N =0 and vT(N) =0=v"(P).

If Ae ¥, ACP, then v(A) = vt (A) — v (A) = v (A) > 0. Similarly, if
A€, ACN, then v(A) = vT(A) —v (A) = —v~(A) < 0. Hence, P is a
positive set for v and N is a negative set for v.
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10.4 Complex measures.

Let (X,X) be a measurable space.

Definition 10.9 A function v : ¥ — C is called a complex measure on
(X, %) if
(Z) V((Z)) =0,

(i1) V(U;':(XfAj) = Z;r:(xf v(A;j) for every pairwise disjoint A;, As,... € X.

It is trivial to prove, taking real and imaginary parts, that the functions
R(v),S(v) : ¥ — R, which are defined by R(v)(A) = R(v(4)) and S(v)(A) =
S(v(A)) for every A € X, are real measures on (X,X) and, hence, they are
bounded. That is, there is an M < 400 so that [R(v)(A)],|S(v)(A)| < M for
every A € ¥. This implies that |[v(A)| < 2M for every A € ¥ and we have

proved the

Proposition 10.7 Let v be a complex measure on (X,X). Then v is bounded,
i.e. there is an M < +o00 so that [v(A)| < M for every A € X.

If 4 and v are complex measures on (X, Y) and k1, ko € C, then k111 +kovs,
defined by (k111 + kova)(A) = kK1v1(A) 4+ Koo (A) for all A € X, is a complex
measure on (X, ¥).

The following are straightforward extensions of Definitions 10.3 and 10.5.

Definition 10.10 Let v be a complex measure on (X,X) and A € ¥. We say
that A is a null set for v if v(B) =0 for every B€ X, BC A.

Definition 10.11 Let vy and vo be complex or signed measures on (X,%). We
say that v1 and vs are mutually singular, and denote this by v Lo, if there
are Ay, Ay € 3 so that As is null for vy, Ay is null for vo and Ay U Ay = X,
Al N A2 - @

Proposition 10.8 Let v be a complex measure on (X,X). If for every A € ¥
we define

|v|(A) = sup { Z [v(Ak)|Im € N, {A1,..., Ay} measurable partition of A},
k=1

then the function |v| : ¥ — [0, +00] is a finite measure on (X, ).

Proof: The proof that |v| is a measure is exactly the same as in part (a) of the
proof of Theorem 10.5.

We take an arbitrary measurable partition {4;,...,A4,} of X and have
S W A] £ Sy RO (AR + X [S0)(AR)] < [ROI(X) + [S(0)](X).
Taking the supremum of the left side, |v|(X) < |R@)|(X) + |S¥)|(X) < +oo,
because the signed measures R(v) and $(v) have finite values.

Definition 10.12 Let v be a complex measure on (X,¥). The measure |v|
defined in Proposition 10.8 is called the absolute variation of v and the
number |v|(X) is called the total variation of v.
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Proposition 10.9 Let v,v1,vs be complex measures on (X,¥) and k € C.
Then

(1) [v1 + vao| < [ra] 4 [vo| and |kv| = |k[|v|

(it) [RW)], [SW)| < [v| < [R@)] + [S(v)].

Proof: (i) The proof is identical to the proof of Proposition 10.6.
(ii) In the same manner, if {A;,..., A,} is any measurable partition of A € 3,
we have Y7_y [R(v)(Ag)] < S, [v(Ap)] < [v](A) and also S7_, [S(v)(Ag)] <
Sonei [v(Ag)| < |v|(A). Taking supremum of the left sides of these two inequal-
ities, we find |R(v)|(A), |3(V)|(A) < |v|(4).

The last inequality is a consequence of the result of (i).
Lemma 10.3 Let v be a complex measure on (X,X) and A € . Then A is

null for v if and only if A is null for both R(v) and S(v) if and only if A is null
for |v|.

Proof: The first equivalence is trivial. The proof that A is null for v if and only
if A is null for |v| is a repetition of the proof of the same result for a signed
measure v. See Lemma 10.1.

Proposition 10.10 Let v1 and v2 be complex or signed measures on (X,X).
Then, vy Lvs if and only if each of R(v1),S(11) and each of R(ve),I(v2) are
mutually singular if and only if |v1|L|va|.

Proof: Trivial after Lemma 10.3.

Example -

We take a measure p on (X,X) and a measurable function f : X — C which
is integrable over X. Then, [ 4 J dp is, by Lemma 7.10, a complex number for

every A € 3, and Theorem 7.13 implies that the function A : 3 — C, which is
defined by

M) = [ s
A
for every A € ¥, is a complex measure on (X, X).

Definition 10.13 Let y be a measure on (X,¥X) and f : X — C be integrable.
The complex measure A defined in the previous paragraph is called the indefi-
nite integral of f with respect to p and it is denoted by fu. Thus,

(F) )= [ fan.  Aes.

The next result is the analogue of Proposition 10.3.

Proposition 10.11 Let j1 be a measure on (X,¥) and f : X — C be integrable
with respect to . Then

|fuw¢4>::/£|f|du

for every A € ¥. Hence,
\ful = [f]p-
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Proof: 1f {Ay,...,A,} is an arbitrary measurable partition of A € 3, then
s WA = S, £ < S o, 1195 = J 1. Thorfoe
taking the supremum of the left side, |ful(A) < [, |f]dpu.

Since f is integrable, it is finite a.e. on X IfN={z e X|f(x) # 0},
then p(N°) = 0 and Theorem 6.1 implies that there is a sequence (¢,,) of
measurable simple functions with ¢, — sign(f) on N and |¢,,,| T |sign(f)] <1
on N. Defining each ¢, as 0 on N¢ we have that all these properties hold a.e.
on X.

If ¢,, = ZZ"’I KX g is the standard representation of ¢y, then [k <1
for all k = 1,...,np and hence, | [, fémdul = | > 5m &) fAmE;c"fdM <

i |(fu)(A N E’”)| < |fp|(A), where the last inequality is true because
{A ﬂ Ef,...,ANE;" } is a measurable partition of A. By the Dominated

Convergence Theorem, we get that [, [fldu = [, fsign(f)du <|ful(A).
We conclude that \fu| = [, |fldp for every A € .

10.5 Integration.

Let (X,X) be a measurable space.
The next definition covers only the case when both f and v have their values
in R.

Definition 10.14 Let v be a signed measure on (X,%). If f : X — R is
measurable, we say that the integral fX fdv of f over X (with respect to
v) is defined if both [ fdvT and [y fdv~ are defined and they are neither

both +00 nor both —oo. In such a case we write

/deV:/del/"’—/del/_.

We say that f is integrable over X (with respect to v) if the [, fdv
s finite.

Proposition 10.12 Let v be a signed measure on (X,%) and f : X — R be
measurable. Then f is integrable with respect to v if and only if f is integrable
with respect to both vt and v~ if and only if f is integrable with respect to |v|.

Proof: [y fdv is finite if and only if both [, fdv™ and [, fdv~ are finite
or, equivalently, [, |f|dvt < +oo and [ |f|dv™ < 400 or, equivalently,
Jx |fld|v| < +oc if and only if f is integrable with respect to |v|.

Lemma 10.4 Let p1,pus be two measures on (X,X) with g < ps. Then
Jx fdur < [ fdus for every measurable f : X — [0, 400].

Proof: If ¢ = Z;nzl KjXE; is a measurable non-negative simple function with its
standard representation, then [y ¢dur = D700 ki (Ey) < 3700 wjue(Ej) =
/ « ¢ duz. For the general f we take a sequence (¢,,) of measurable non-negative
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simple functions with ¢, T f on X. We write the inequality for each ¢, and
the Monotone Convergence Theorem implies fX fdu < fX fdus.

Now, suppose that v is a signed measure or a complex measure on (X, )
and the function f : X — R or C is measurable. If [ [f|d|v| < 400, then
f is finite |v|-a.e. on X and the |v|-a.e. defined functions R(f) and I(f)
satisfy [y [R(f)|dlv| < +oo and [y [S(f)|d|v] < +oo. Since, by Proposi-
tion 10.9, |R(v)| < |v| and |S(v )| < |v|, Lemma 10.4 implies that all integrals
L IRCIAR@), fy RO AISO), [ 150 dR() [y (A0 are
finite. Proposition 10.12 implies that all integrals [, R ¥ ), [x R ¥
S5 S(f)dR(v) and [ S(f)d3(v) are defined and they all are real numbers.

Therefore, the following definition is valid.

Definition 10.15 Let v be a signed measure or a complexr measure on (X, )
and f : X — R or C be measurable. We say that f is integrable over X
(with respect to v) if f is integrable with respect to |v|. In such a case we say
that the integral fX fdv of f over X (with respect to v) is defined and
it is given by

/deu:/X%(f)d?)%(u)—/X%(f)d%(u)—i-i/x%(f)d%(z/)—ki/xg(f)d%(u).

Of course, when f : X — C and v is signed, we have

/dey:/X%(f)du—H/X%(f)du,

and when f: X — R and v is complex, we have

/dez/:/xfdﬁk(v)—ki/xfd%(y)

all under the assumption that [, |f|d[v| < +oo.

We shall not bother to extend all properties of integrals with respect to
measures to properties of integrals with respect to signed measures or complex
measures. The safe thing to do is to reduce everything to positive and negative
variations or to real and imaginary parts.

For completeness, we shall only see a few most necessary properties, like the
linearity properties and the appropriate version of the Dominated Convergence
Theorem.

Proposition 10.13 Let v,v1, v be signed or compler measures on (X,¥) and
£, fi, fa : X — R or C be all integrable with respect to these measures. For
every ki, ko € C,

/X(f€1f1+/~€2f2)dV251/)(f1du+/€2/xf2d1/,
Afd(H1V1+K2V2>ZﬁlAde1+K2/)<de2.
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Proof: The proof is straightforward when we reduce everything to real functions
and signed measures.

Theorem 10.7 (Dominated Convergence Theorem) Let v be a signed or
complex measure on (X,X), f,fn : X = R or C and g : X — [0,4+0c0] be
measurable. If f, — f and |fn] < g on X except on a set which is null for v

and if [ gdlv| < +oo, then
/ fn du—>/ fdv.
X b

Proof: A set which is null for v is, also, null for v and v, if v is signed,
and null for R(v) and I(v), if v is complex. Moreover, by Lemma 10.4,
Jxgdvt, [ gdv™ < +oo, if v is signed, and [, gd|R(V)|, [y gd|S(v)| < +o0,
if v is complex.

Therefore, the proof reduces to the usual Dominated Convergence Theorem
for measures.

Theorem 10.8 Let v be a signed or complex measure on (X, %) and f : X — R
or C be such that the fX fdv is defined. Then

| [ sl [ isrdp

Proof: We may assume that fX |fld|v] < +o0, or else the inequality is obvious.

If v is a signed measure, | [ fdv|=| [y fdvT — [ fdv™| <| [ fdvT|+
| [x favm < [x [fldvT + [ fldv™ = [ |fld]v].

If v is complex, we shall see a proof which is valid in all cases anyway.

Let ¢ : X — C be a measurable simple function with its standard repre-
sentation ¢ = > ,_, kkxk, and so that |v|(Ey) < +oc for all k. Then, we
have | [ ddv] = | Sy (Bl < Sy el w(Be)| < Sy mallvl (Be) =
Iy l6]dlv].

Consider a sequence (¢,,) of measurable simple functions so that ¢, — f
on X and |¢,| T |f] on X. The Monotone Convergence Theorem implies
Jx |onldlv] — [y |f|d|v| and Theorem 10.7, together with [, |f|d|v| < +oo,
implies that [, ¢n dv — [, fdv. Taking the limit in | [, ¢ dv| < [y [¢n]|d|v]|

we prove the ’fX fdl/‘ < [x |fldv|.
A companion to the previous theorem is

Theorem 10.9 Let v be a signed or complex measure on (X,3). Then

|v|(4) = sup{‘/ fdu‘ | f is measurable, |f| <1 on A},
A

for every A € X, where the functions f have real values, if v is signed, and
complex values, if v is complez.
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Proof: If f is measurable and |f| < 1 on A, then |fxa| < x4 on X and Theorem
10.8 implies | [, fdv| = | [y fxadv| < [y |fxaldlv] < [y xadly] = |[v[(A).
Therefore the supremum of the left side is < |v|(A).

If v is signed, we take a Hahn decomposition of X for v. There are P, N €
so that PUN = X, PN N = (), P is a positive set and N a negative set for v.
We consider the function f with values f =1 on P and f = —1 on N. Then
| [y fdv]=|v(ANP)—v(ANN)|=v(ANP)—v(ANN)=vT(A) +v (A) =
|v|(A). Therefore, the supremum is equal to |v|(A).

If v is complex, we find a measurable partition {A;,...,A,} of A so that
[v[(A) —e < Y p_, [v(Ak)|. We, then, define the function f = >°;_; kexa,,
where kj = sign(v(Ag)) for all k. Then, |f| < 1 on A and | [, fdv| =
| > ey ke (Ag)| = Y n_; [v(Ak)| > |v|(A) — e. This proves that the supremum
is equal to |v|(A).

Finally, we prove a result about integration with respect to an indefinite
integral. This is important because, as we shall see in the next section, indefinite
integrals are special measures which play an important role among signed or
complex measures.

Theorem 10.10 Let j1 be a measure on (X,%) and f : X — R or C be measur-
able so that fX fdu is defined. Consider the signed measure or complex measure
fu, the indefinite integral of f with respect to p.

A measurable function g : X — R or C is integrable over X with respect to
fu if and only if gf is integrable over X with respect to p. In such a case,

/ng(fﬂ):/ngdﬂ-

This equality is true, without any restriction, if f,g : X — [0,400] are
measurable.

Proof: We consider first the case when g, f : X — [0, 4+00].

If g = xa for some A € X, then [, xad(fp) = (fu)(A) = [, fdu =
Jx xafdp. Hence, the equality [y gd(fu) = [y gfdu is true for character-
istic functions. This extends, by linearity, to measurable non-negative simple
functions g = ¢ and, by the Monotone Convergence Theorem, to the general g.

This implies that, in general, [ |g|d(|f|i) = [y |gf|dp. From this we see
that g is integrable over X with respect to fu if and only if, by definition, g is
integrable over X with respect to |fu| = |f|w if and only if, by the equality we
just proved, gf is integrable over X with respect to p.

The equality [ v 9d(fu) = / + 9f du can, now, be established by reducing all
functions to non-negative functions and using the special case we proved.

10.6 Lebesgue decomposition, Radon-Nikodym
derivative.

Let (X,X) be a measurable space.
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Definition 10.16 Let p be a measure and v a signed or complex measure on
(X,X). We say that v is absolutely continuous with respect to u when
v(A) =0 for every A € ¥ with u(A) =0 and we denote by

v .

Example
Let f: X — R or C be measurable so that the fX fdu is defined (recall that,
in the case of C, this means that f is integrable). Then the indefinite integral
fu is absolutely continuous with respect to p.

This is obvious: if A € ¥ has u(A) =0, then (fu)(A) = [, fdu=0.

Proposition 10.14 Let i be a measure and v, v1, v be signed or complex mea-
sures on (X,%).

(i) If v is complex, then v < p if and only if R(v) < p and S(v) < p if and
only if [v] < .

(11) If v is signed, then v < p if and only if vT < p and v~ < p if and only if
lv| < p.

(i1i) If v < p and v Ly, then v =0.

() If v1,v0 < p and vy + vy is defined, then vy + vy < p.

Proof: (i) Since v(A) = 0 is equivalent to R(v)(A4) = J(v)(A4) = 0, the first
equivalence is obvious.

Let v <« p and take any A € ¥ with pu(A) = 0. If {Ay,...,A,} is any
measurable partition of A, then p(Ay) = 0 for all k and, thus, Y ;_, [v(Ag)| = 0.
Taking the supremum of the left side we get |v|(A) = 0. Hence, |v| < p.

If |v| < p and we take any A € 3 with p(A) = 0, then |v(A)] < |v|(4) = 0.
Therefore, v(A) =0 and v < p.

(ii) The argument of part (i) applies without change to prove that v < p if and
only if |v| < p. Since |v| = vT + v, it is obvious that vT < p and v~ < p if
and only if |v] < p.

(iii) Take sets M, N € ¥ so that MUN = X, M NN = (), M is a null set for
v and N is a null set for p. Then, u(N) = 0 and v < g imply that N is a null
set for v. But, then, X = M U N is a null set for v and, hence, v = 0.

(iv) If A € ¥ has u(A) = 0, then v1(A) = v2(A) = 0 and, hence, (v1+12)(A) = 0.

The next result justifies the term absolutely continuous at least in the special
case of a finite v.

Proposition 10.15 Let u be a measure and v a real or a complexr measure on
(X,%). Then v < p if and only if for every e > 0 there is a 6 > 0 so that
[v(A)| < e for every A € ¥ with p(A) < 9.

Proof: Suppose that for every € > 0 there is a § > 0 so that |v(A)| < e for every
A € ¥ with p(A) < 6. If u(A) =0, then p(A) < § for every § > 0 and, hence,
|v(A)| < € for every € > 0. Therefore, v(A) =0 and v < p.

Suppose that v < p but there is some €y > 0 so that, for every § > 0, there
is A € ¥ with p(A) < ¢ and |v(A)| > €p. Then, for every k, there is A € ¥ with
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1(Ar) < o5 and |v|(Ax) > |[v(Ak)| > €. We define By = U;"°Y A; and, then,
1(By) < =t and [v|(Bg) > |[v|(Ax) = € for every k. If we set B = N> By,
then By | B and, by the continuity of |v| from above, we get u(B) = 0 and
|v|(B) > €. This says that |v| is not absolutely continuous with respect to
and, by Proposition 10.14, we arrive at a contradiction.

Theorem 10.11 Let p be a measure on (X,%).

(i) If \, N, p, p’ are signed or complex measures on (X,X) so that A, \' < u and
p, 0 Lpand X+p=XN+p', then \=X and p=p.

(ii) If f, f' : X — R or C are integrable over X with respect to u and fu = f'pu,
then f = f' p-a.e. on X.

(iii) If f,f" + X — R are measurable and [y fdu, [y f'du are defined and
fu = flu, then f = f' p-a.e. on X, provided that p, restricted to the set
{z e X|f(zx) # f'(x)}, is semifinite.

Proof: (i) There exist sets M, M’ N, N' € ¥ with MUN = X = M'UN’,
MNN=0=M nNN'so that N, N" are null for g, M is null for p and M’ is
null for p'. If we set K = NUN’, then K is null for 4 and K¢ = M N M’ is null
for both p and p’. Since A\, N < u, we have that K is null for both A and \'.

If Ae X, AC K, then p(A) = p(4A) + A(4A) = p'(A) + N (A) = p'(4). If
Ae X, ACKES then p(A) =0 = p/(A). Therefore, for every A € ¥ we have
p(A) = p(ANK)+p(ANK®) = p(ANK)+ p'(AN K = p'(A) and, hence,
p=r

A symmetric argument implies that A = \'.
(it) We have [,(f = f')dp = [, fdu— [, f du= (fu)(A) = (f'1)(A) = 0 for
all A € 3. Theorem 7.5 implies f = f’ p-a.e. on X.
(i) Let t,s € R with ¢t < sand 4,5 = {x € X|f(z) < t,s < f'(x)}. If
0 < pu(As) < 400, we define B = Ay 5. If p(A;s) = +oo, we take B € X so
that B C Ay s and 0 < u(B) < +oo. In any case, (fu)(B) = [5 fdu < tu(B)
and (f'u)(B) = [z f'dp > su(B) and, thus, su(B) < tu(B). This implies
w(B) = 0, which is false. The only remaining case is u(A;s) = 0.

Now, we observe that {z € X | f(z) < f'(z)} = Ut seq,t<sAt,s, which implies
u(le € X | f(x) < f/(x)}) = 0. Similarly, u({z € X | f(z) > /(x)}) = 0 and
we conclude that f = f/ py-a.e. on X.

Lemma 10.5 Let u,v be finite measures on (X,%). If p and v are not mutually
singular, then there exists an eg > 0 and an Ag € ¥ with u(Ag) > 0 so that

v(A)
p(A)
for every A € 3, A C Ay with u(A) > 0.

> €o

Proof: We consider, for every n, a Hahn decomposition of the signed measure
v — %M- There are sets P,, N, € ¥ so that P, UN,, = X, P, "N, =0 and P,
is a positive set and N, is a negative set for v — %u.

We set N = NN, and, since N C N, for all n, we get (v — Lp)(N) <0
for all n. Then v(N) < Lu(N) for all n and, since p(N) < +o0, v(N) = 0. We
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set P = U P, and have PUN = X and PN N = (. If u(P) = 0, then p and
v are mutually singular. Therefore, u(P) > 0 and this implies that p(Pxy) > 0
for at least one N. We define A9 = Py for such an N and we set ¢y = for
the same N.

Now, u(A4g) > 0 and, if A € ¥, A C Ay, then, since Ay is a positive set for

v — €op, we get v(A) — eou(A) > 0. If also p(A) > 0, then :E’:% > €.

Theorem 10.12 (Lebesgue-Radon-Nikodym Theorem. Signed case.)
Let v be a o-finite signed measure and i be a o-finite measure on (X,X). Then
there exist unique o-finite signed measures X\ and p on (X,X) so that

1
N

v=A+p, A< p, pLp.

Moreover, there exists a measurable f : X — R so that the fX fdu is defined
and

A= fpu.

If ' is another such function, then ' = f p-a.e. on X.
If v is non-negative, then \ and p are non-negative and f > 0 p-a.e. on X.
If v is real, then A and p are real and f is integrable over X with respect to u.

Proof: The uniqueness part of the statement is a consequence of Theorem 10.11.
Observe that u is o-finite and, hence, semifinite.

Therefore, we need to prove the existence of A, p and f.
A. We first consider the special case when both u,v are finite measures on
(X,%).

We define C to be the collection of all measurable f : X — [0, +o00] with the
property

/fd,uSV(A), AeX.
A

The function 0, obviously, belongs to C and, if fi, fo belong to C, then the
function f = max{f1, f2} also belongs to C. Indeed, if A € ¥ we consider
Ay ={z € A| fa(x) < fi(x)} and Ay = {z € A| fi(z) < f2(z)} and we have
fAde = fAl fdﬂ+fA2 fdu= fA1 fldlu"‘fA2 fadp < v(Ar) +v(Az) = v(A).

We define
K = sup /fdu fecy.
{ saulsect

Since 0 € C and [ fdp < v(X) for all f € C, we have 0 < k < v(X) < +oc.
We take a sequence (f,,) in C so that fX fndp — K and define g1 = f1 and,

inductively, g, = max{gn_1, fn} for all n > 2. Then all g, belong to C. If we

set f = limy,— 400 gn, then g, T f and, by the Monotone Convergence Theorem,

/fduﬁz/(A)7 AeX
A

and

/fdu=m<—|—oo.
X

203



Since (v — fu)(A) = v(A) — [, fdu > 0 for all A € %, the signed measure
v — fu is a finite measure. If v — fu and p are not mutually singular, then, by
Lemma 10.5, there is Ag € ¥ and ¢g > 0 so that

/f _ v—fﬂi( )260

forall A e ¥, A C A with z(A) > 0. From this we get [, (f+e€oxa,) dp < v(A)
for all A € ¥, A C Ay. Now for any A € ¥ we have [,(f + eoxa,)dp =
fAon(f+€0XAo) dﬂ+fA\A0(f+€oXAo) dp < V(AQAO)+IA\AO(JC+€OXAO) dp =

v(AN Ag) + fA\A fdu < v(AN Ag) +v(A\ Ap) = v(A). This implies that
|+ €oxa, belongs to C and hence k + egu(Ap) = fX f+eoxa,)dp < k. This is
false and we arrived at a contradiction. Therefore, v — fu L pu.

We set p = v — fu and A = fu and we have the decomposition v = A + p
with A < p, pLp. Both A and p are ﬁnite measures and f : X — [0,400] is
1ntegrable with respect to u, because A(X fX fdu =k < +o0 and p(X) =

— [x fdp=v(X)— kK < +o0.
B. Wc, now, suppose that both u, v are o-finite measures on (X, ).

Then, there are pairwise disjoint Fi, Fo,... € ¥ so that X = U Fk and
w(EFy) < 400 for all k and pairwise disjoint G1,Ga, ... € ¥ so that X Ul TGy
and v(G)) < +oo for all I. The sets Fj, N G are pairwise disjoint, they cover X
and u(FrNG;),v(FrNG)) < +oo for all k,I. We enumerate them as F1, Es, ...
and have X = U™ E,, and u(E,),v(E,) < +oo for all n.

We define p,, and v,, by

tn(A) = p(AN Ey), vn(A) =v(ANEy)

for all A € ¥ and all n and we see that all p,, v, are finite measures on (X, X).

We also have
+oo +oo
= mn(4),  v(A) =) va(4)
n=1 n=1
for all A € X.

Applying the results of part A, we see that there exist finite measures A, p,
on (X,X) and f, : X — [0, 400] integrable with respect to u, so that

Un =An+pns An Kpy  pnlpin,  An(A) = / fr bt
A
for all n and all A € 3. From v, (ES) = 0 we get that A, (ES) = pn(ES) = 0.
Now, since pn,(A) = A (A) =0 for every A € &, A C E¢, the relation A\, (A) =

fA fn dpy, remains true for all A € ¥ if we change f, and make it 0 on ES. We,
therefore, assume that

ANE,
for all n and all A € 3.
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We define A\, p: ¥ — [0, +00] and f: X — [0, +00] by

+oo +oo +oo
MA) =D Aa(A), p(A) =) palA), f(2) =) fula)

n=1

for every A € ¥ and every z € X. It is trivial to see that A and p are measures
on (X, YY) and that f is measurable.

The equality v = A\ 4 p is obvious.

If A€ X has u(A) =0, then p,(A) = p(AN E,) =0 and, hence, A\,,(A) =0
for all n. Thus, A(A) = 0 and, thus, A < p.

Since py, Ly, there is R, € ¥ so that R, is null for p,, and R is null for
pn. But, then R], = R,, N E,, is also null for u, and R)* = R U E¢ is null for
pn- Since R!, is obviously null for all p,,, m # n, we have that R, is null for p.
Then R = U2 R, is null for p and R® = N} R/ is null for all p,, and, hence,
for p. We conclude that pLpu.

The A and p are o-finite, because A\(E,) = A\, (E,) < 400 and p(E,) =
pn(Ern) < 400 for all n.

Finally, for every A € %, M\(A) = Y72 \(4) = 3% fAﬂEn frdin =
roe ang, | din = e ang, fdw = J4 fdp. The fourth equality is true

because [, fdu, = [p fdu for all measurable f : X — [0,+0c]. This is
justified as follows: if f = x4, then the equality becomes p.,,(ANE,) = p(ANE,)
which is true. Then the equality holds, by linearity, for non-negative measurable
simple functions and, by the Monotone Convergence Theorem, it holds for all
measurable f : X — [0,+0c]. Now, from A(A) = [, fdu, we conclude that
A= fu and that A < p.

C. In the general case we write v = v+ — v~ and both v, v~ are o-finite
measures on (X,3). We apply the result of part B and get o-finite measures
)\1,)\2,p1,p2 so that vt = A+ p1, V= Ao + P2 and )\1,A2 < u, pl,pQJ_pJ.
Since either v+ or v~ is a finite measure, we have that either A1, p; are finite
or Ag, po are finite. We then write A = Ay — Ay and p = p; — p2 and have that
v=A+pand A\ << u, plpu.

We also have measurable fi, fo : X — [0,+00] so that Ay = fiu and Ay =
fap. Then, either [y fidp = M\ (X) < 400 or [y fadp = Xa(X) < 400 and,
hence, either f; < +o0o p-a.e. on X or fo < +o00 p-a.e. on X. The function
f = fi— f2is defined p-a.e. on X and the [, fdu = [y fidu— [y fodp exists.
Now, AM(A) = M\ (A) = X2(A) = [, frdu— [, fadp = [, fdp for all A e ¥ and,
thus, A = fu.

Theorem 10.13 (Lebesgue-Radon-Nikodym Theorem. Complez case.)
Let v be a complex measure and 1 be a o-finite measure on (X,X). Then there
exist unique complex measures A and p on (X,X) so that

v=A+p, A< p, pLp.

Moreover, there exists a measurable f : X — C so that f is integrable over X
with respect to . and

A= fpu.



If ' is another such function, then ' = f p-a.e. on X.
If v is non-negative, then \ and p are non-negative and f > 0 p-a.e. on X.
If v is real, then A and p are real and f is extended-real valued.

Proof: The measures R(v) and J(v) are real measures and, by Theorem 10.12,
there exist real measures A1, Az, p1, p2 on (X, X) so that R(v) = A1 +p1, S(v) =
A2+ p2 and Ay, Ao < pand py, polpu. Weset A = Ay +iXy and p = py +ips2 and,
then, v = A + p and, clearly, A < p and pLp. There are, also, fi, fo: X — R,
which are integrable over X with respect to pu, so that Ay = fipu and Ay = fopu.
The function f = f1 +ifs : X — C is p-a.e. defined, it is integrable over X
with respect to p and we have (fu)(A) = [, fdu = [, frdp+i [, fadp =
M (A) +ix2(A) = A(A) for all A € ¥. Hence, A = fpu.
The uniqueness is an easy consequence of Theorem 10.11.

Definition 10.17 Let v be a signed measure or a complex measure and p a
measure on (X,X). If there exist, necessarily unique, signed or complex mea-
sures A and p, so that

v=A+p, A<Lp, ply,

we say that A and p constitute the Lebesgue decomposition of v with
respect to L.

A is called the absolutely continuous part and p is called the singular
part of v with respect to p.

Let v be a signed or complex measure and p a measure on (X,%) so that
v < . If there exists a measurable f : X — R or C so that fX fdu is defined
and

v=fu,

then f is called a Radon-Nikodym derivative of v with respect to . Any
dv

Radon-Nikodym derivative of v with respect to u is denoted by e

Theorems 10.12 and 10.13 say that, if v and u are o-finite, then v has a
unique Lebesgue decomposition with respect to p. Moreover, if v and p are o-
finite and v < p, then there exists a Radon-Nikodym derivative of v with respect
to w, which is unique if we disregard p-null sets. This is true because v = v +0
is, necessarily, the Lebesgue decomposition of v with respect to u.

We should make some remarks about Radon-Nikodym derivatives.
1. The symbol Z—Z appears as a fraction of two quantities but it is not. It is like

the well known symbol % of the derivative in elementary calculus.

2. Definition 10.17 allows all Radon-Nikodym derivatives of v with respect to u
to be denoted by the same symbol g—;. This is not absolutely strict and it would
be more correct to say that g—” is the collection (or class) of all Radon-Nikodym
derivatives of v with respect to p. It is simpler to follow the tradition and use
the same symbol for all derivatives. Actually, there is no danger for confusion
in doing this, because the equality f = g—;, or its equivalent v = fu, acquires
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its real meaning through the v(A4) = fA fdu, AeX.

3. As we just observed, the real meamng of the symbol dv

is through
v(A) = / fracdvdp dp, Aeyx,
A

Wthh after formally simplifying the fraction (1), changes into the true equality
= [, dv.
4. Theorem 10.11 implies that the Radon-Nikodym of v <« u with respect to
W, if it exists, is unique when p is a semifinite measure, provided we disregard
sets of zero p-measure.
The following propositions give some properties of Radon-Nikodym deriva-
tives of calculus type.

Proposition 10.16 Let v1,1v5 be complex or o-finite signed measures and p a
o-finite measure on (X,X). Ifvi,ve < p and v1+vs is defined, then vi+vy <

and
d(vi +v2) dvy | dvs

= — -a.e. X.
i du—’_du’ u-a.e. on
Proof: We have (11 +12)(A) = [, Cfi’ﬁ dp+ [, dl; dp= [, (d”l + ffj;f) du for all
A € ¥ and, hence, d(”iii;”"‘):‘fi’;l 4—‘“’2 p-a.e. on X.

Proposition 10.17 Let v be a complex or a o-finite signed measure and | a
o-finite measure on (X,X). If v < p and k € C or R, then kv < p and

d d
(rev) = n—y, p-a.e. on X.
du du
Proof: We have (kv)(A) = ﬁfA Ly = [, (kS )d,u for all A € ¥ and, hence,
) -a.e. on X
m du Ji-a.e. )

Proposition 10.18 (Chain rule.) Let v be a complex or o-finite signed measure
and ',y be o-finite measures on (X,3). If v < p' and p' < p, then v <
and
dv  dv du
d,u d,u’ dup’
Proof: If A € ¥ has u(A) =0, then u/(A) = 0 and, hence, v(A) = 0. Therefore,
V<
Theorem 10.10 implies that v(A) = [, j:/ dp' = dv di/d,u for every

A dp' dp
A€ and, hence, & = dv 4 X
and, hence, 70 = 77 - p-a.e. on X.

p-a.e. on X.

Proposition 10.19 Let p and i’ be two o-finite measures on (X,%). If / < p
and p < ', then
dp dy’
SR _ 1, p-a.e onX.
du’ dp
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Proof: We have u(A) = [, du for every A € ¥ and, hence, Z—ﬁ =1 p-a.e. on X.

The result of this proposition is a trivial consequence of Proposition 10.18.

Proposition 10.20 Let v be a o-finite measure on (X,3). Then v < |v| and

d

. =1, v-ae. onX.

dlv|
Proof: Proposition 10.11 implies that ‘% lv| = ‘%hj" = |v| and, hence,
‘% =1 |v|-a.e. on X.

10.7 Differentiation of indefinite integrals in R".

Let f : [a,b] — R be a Riemann integrable function. The Fundamental Theorem
of Calculus says that, for every x € [a,b] which is a continuity point of f, we
have 4L [ f(y)dy = f(x). This, of course, means that

i de @)y T Iwdy LI dy - f @)y
r—0+ r r—0+ -

Adding the two limits, we find

lim

r—0+ 2r

In this (and the next) section we shall prove a far reaching generalisation of

this result: a fundamental theorem of calculus for indefinite Lebesque integrals
and, more generally, for locally finite Borel measures in R™.

Lemma 10.6 (N. Wiener) Let By,...,B,, be open balls in R™. There exist
pairwise disjoint By, , ..., B;, so that

Mp(By) + -+ mp(Bi,) > 3% My (B U---UByp,).
Proof: From By, ..., B, we choose a ball B;, with largest radius. (There may
be more than one balls with the same largest radius and we choose any one of
them.) Together with B;, we collect all other balls, its satellites, which intersect
it and call their union (B;, included) C;. Since each of these balls has radius
not larger than the radius of B;,, we see that C7; C B;, where B} is the ball

with the same center as B;, and radius three times the radius of B;,. Therefore,
mp(C1) < my(B])) = 3"mu(B;,).

The remaining balls have empty intersection with B;, and from them we
choose a ball B;, with largest radius. Of course, B;, does not intersect B, .
Together with B;, we collect all other balls (from the remaining ones), its satel-
lites, which intersect it and call their union (B;, included) C5. Since each of

208



these balls has radius not larger than the radius of B;,, we have Cy C B/, where
B; is the ball with the same center as B;, and radius three times the radius of
B;,. Therefore, we hav

Mp (02) < mn(B;‘:,) = S”mn (BLQ)

We continue this procedure and, since at every step at least one ball is
collected (B;, at the first step, B;, at the second step and so on), after at most
m steps, say at the kth step, the procedure will stop. Namely, after the first
k —1 steps, the remaining balls have empty intersection with B;,, ..., B;, , and
from them we choose a ball B;, with largest radius. This B;, does not intersect
Bi,,...,Bi,_,. All remaining balls intersect B;,, they are its satellites, (since
this is the step where the procedure stops) and form their union (B;, included)
C. Since each of these balls has radius not larger than the radius of B;, , we
have Cy C B} , where B}, is the ball with the same center as B;, and radius
three times the radius of B;,. Therefore,

My (Cr) < myp(B]) = 3"m,(B;,).

It is clear that each of the original balls B, ..., B,, is either chosen as one
of B;,,...,B;, oris asatellite of one of B;,, ..., B;,. Therefore, BiU---UB,, =
Cy U---UC} and, hence,

Mup(B1U---UBy) = mp(C1U---UCL) < mu(Cy)+ -+ mp(Ck)

Definition 10.18 Let f : R* — R or C be Lebesgue measurable. We say
that f is locally Lebesgue integrable if for every x € R"™ there is an open
neighborhood U, of x so that [, |f(y)| dmy(y) < +oo.

Lemma 10.7 Let f : R®” — R or C be Lebesque measurable. Then f is locally
Lebesgue integrable if and only if [,, |f(y)| dmn(y) < +oo for every bounded set
MeL,.

Proof: Let f be locally Lebesgue integrable and M C R™ be bounded. We
consider a compact set K O M. (Such a K is the closure of M or just
a closed ball or a closed cube including M.) For each z € K we take an
open neighborhood U, of = so that fo |f(y)] dmn(y) < +oco. We, then, take
finitely many x1,...,2m so that M C K C U,, U---UU,,_ . This implies
S lF @) dma(y) < [y, 1f@)dma(y) + -+ [y, |f(y)ldmn(y) < +oo.

If, conversely, [, |f(y)|dmn(y) < +oo for every bounded set M € L,,
then fB(a:;l) |f(y)| dm,(y) < +oo for every x and, hence, f is locally Lebesgue
integrable.

Proposition 10.21 Let f, fi, fo : R® — R or C be locally Lebesque integrable
and k € C. Then
(i) f is finite a.e. on R™,
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(ii) f1 + fo is defined a.e. on R™ and any Lebesque measurable definition of
f1+ fo is locally Lebesgue integrable,
(i11) kf is locally Lebesgue integrable.

Proof: (i) Lemma 10.7 implies fB(O'k) |f(y)|dmn(y) < 4oo and, hence, f is
finite a.e. in B(0;k) for every k. Since R™ = U;;’OIB(O;k), we find that f is

finite a.e. in R™.
(ii) By (i), both f1, fo are finite and, hence, f1 + fo is defined a.e. on R™. We

have [y, [f1(y) + f2(y)| dmn(y) < [y |f1@)] dma(y) + [y [ f2(y)] dma(y) < +oo
for every bounded M C R™ and, by Lemma 10.7, f; + f2 is locally Lebesgue

integrable.
(i) Similarly, [, [&f(y)| dmn(y) = || [, |f(y)|dmn(y) < +oo for all bounded
M C R™ and, hence, «f is locally Lebesgue integrable.

The need for local Lebesgue integrability (or for local finiteness of measures)
is for definitions like the following one to make sense. Of course, we may restrict
to Lebesgue integrability if we like.

Definition 10.19 Let f : R® — R or C be locally Lebesgue integrable. The
function M(f): R™ — [0, 4+00], defined by

M(f)@)= s o /B £ @) dmay)

B open ball, B>z mn(B)
for all x € R™, is called the Hardy-Littlewood maximal function of f.

Proposition 10.22 Let f, f1, fo : R® — R or C be locally Lebesque integrable
and k € C. Then

(i) M(f1+ f2) < M(f1) + M(f2),

(ii) M(kf) = |s|M(f).

Proof: (i) For all - and all open balls B 3 x, 5 [ |fi(y) + fa(y)| dmn(y) <
ey S 1L @) dma )+ 555 S5 1 f2(9) dma(y) < M(f1)(2)+M(f2)(z). Tak-
ing supremum of the left side, we get M (f1 + f2)(z) < M(f1)(z) + M(f2)(x).
(i) Also, =Lz [ 15 ()| dmn(y) = [l [ |F ()l dmaly) < [1M(f)(2)
and, taking the supremum of the left side, M (kf)(z) < |c|M(f)(x). Conversely,
M(sf)(@) = 5y [ Ik W) dmn(y) = |5l 51/ (W)] dma(y) and, taking
the supremum of the right side, M (kf)(x) > |k|M(f)(z).

Lemma 10.8 Let f : R® — R or C be locally Lebesque integrable. Then, for
every t > 0, the set {x € R™ |t < M(f)(x)} is open in R™.

Proof: Let U = {z € R"|t < M(f)(x)} and € U. Then t < M(f)(x) and,
hence, there exists an open ball B 3 z so that ¢ < #(m I [f @) dmy(y). If we

take an arbitrary ' € B, then m I If W) dmn(y) < M(f)(2") and, thus,
t < M(f)(z"). Therefore, B C U and U is open in R™.

Since {x € R™ |t < M(f)(z)} is open, it is also a Lebesgue set.
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Theorem 10.14 (Hardy, Littlewood) Let f : R® — R or C be Lebesgue inte-
grable. Then, for every t > 0, we have

311
<

mo({a € R £ < M@ <7 [ 170 dma(y)

Proof: We take arbitrary compact K C U = {z € R" |t < M(f)(x)} and for
each z € K we find an open ball B, > z with t < mez |f(y)| dmn(y).
Since K is compact, there exist x1,...,%,, so that K C B, U---U DB, . By
Lemma 10.6, there exist pairwise disjoint By, ..., B:vik so that

My (B, U+ U By, ) <3"(mn(By, )+ + mn(Bka
Then

My (K) < mp (B, U---U By, )

<[ vwlam e [ rwlanm)

@i Ty

3n
t

IN

| 1) dma).

By the regularity of m,,, m,(U) = sup{m,(K)| K is compact C U} and
we conclude that m, (U) < 2~ [g. |f(¥)] dmn(y).

Observe that the quantity m,, ({x € R™ |t < M(f)(x)}) is nothing but the
value at t of the distribution function Aps(s) of M(f). Therefore, another way
to state the result of Theorem 10.14 is

n

M < 5 [ 1) dma ).

Definition 10.20 Let (X,X, 1) be a measure space and g : X — R or C be
measurable. We say that g is weakly integrable over X (with respect to
p) if there is a ¢ < 400 so that g (t) < § for every t > 0.

Another way to state Theorem 10.14 is: if f is Lebesque integrable, then
M(f) is weakly Lebesgue integrable.

Proposition 10.23 Let (X, %, 1) be a measure space, g,91,92 : X — R or C
be weakly integrable over X and x € C. Then

(i) g is finite a.e. on X,

(ii) g1 + go is defined a.e. on X and any measurable definition of g1 + go is
weakly integrable over X,

(ii1) kg is weakly integrable over X.

Proof: (i) Ag(t) < ¢ for all t > 0 implies that u({z € X |g(z) is infinite}) <
p({r € X |n <|g(x)[}) < £ forall n and, thus, u({z € X | g(x) is infinite}) = 0.
(ii) By (i) both g1 and go are finite a.e. on X and, hence, g1 + g2 is defined a.e.
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on X. If p({z € X[t <g1(z)|}) < ¢ and p({z € X |t < |g2(x)[}) < 2 for all
t > 0, then any measurable definition of g, + go satisfies, for every ¢ > 0, the
estimate: p({z € X |t <|g1(z) + g2(2)[}) < n({z € X |5 <q1(2)[}) + u({z €
X 1§ <lg2(2)]}) < 2of2ee,

(i) Fpu{r e X |t < |g( )|}) < S forall t >0, then u({z € X |t < |kg(x)|}) =

p{z € X |14 < lg(@)[}) < 9 for all ¢ > 0.

Proposition 10.24 Let (X, %, 1) be a measure space and g : X — R or C be
integrable over X. Then g is also weakly integrable over X.

Proof: We have Ay (t) = p({x € X[t < [g(z)]}) < lf{g[‘,ex|t<|g(gg)|} gl dp <
1 [ lgl du for all ¢ > 0. Therefore, \((t) < ¢ for all t > 0, where ¢ = [ |g| dp.

Example
The converse of Proposition 10.24 is not true. Consider, for example, the func-
tion g(z) = \wl" ,x € R".

By Proposition 8.12, [g, [g(z)|dmy(z) = on_1(S"71) 0+Ooﬁr”_1 dr =

an_l(S"_l)foer%dr = +o00. But, {z € R"|t < |g(x)|} = B(0;t~ =) and,
hence, \j4|(t) = vy, - (t=w)" = Z for every t > 0, where v, = m,(B(0;1)).

The next result says that the Hardy-Littlewood maximal function is never
(except if the function is zero) Lebesgue integrable.

Proposition 10.25 Let f: R® — R or C be Lebesgue integrable. Then M(f)
is locally Lebesgue integrable. If M(f) is Lebesgue integrable, then f = 0 a.e.
on R™.

Proof: Let A = {z € R"|f(x) # 0} and assume that m,(A) > 0. Since
A =U{S(ANB(0;k)), we get that m,, (AN B(0;k)) > 0 for at least one k > 1.
We set M = AN B(0; k) and we have got a bounded set M so that m,, (M) > 0
and |z| < k for every x € M. Since f(z) # 0 for every © € M, we have that
Jar 1f @) dmu(y) > 0.

We take any x with |z| > k and observe that there is an open ball B of
diameter |x\ + k; + 1 containing = and including M. If v, = mn(B(O 1)), then

M) > s [ F W dmn(s) > e fy F@)dmaly) >
with ¢ = -2 fM|f )l dmy(y) > 0. This implies [g,, [M(f)(z)|dm,(z) >

’Un3"
— +oo —
Cf{reRn | 2>k} ﬁ dmy,(z) = cop_1(S"71) [ Ll dr = 4o0.

The next result is a direct generalization of the fundamental theorem of
calculus and the proofs are identical.

Lemma 10.9 Let g : R™ — C be continuous on R™. Then

1
lim ———— —g(x)|dm,(y) =0
/B . lo) @)l dma ()

r—0+ my, (B(x; 7))

for every x € R™.
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Proof: Let € > 0 and take > 0 so that |g(y) — g(x)| < € for every y € R™ with
ly — x| < &. Then, for every r < 4, WIB@M lg(y) — g(x)| dm,(y) <
m fB(z;r) den(y) = €.

Theorem 10.15 (Lebesgue) Let f : R® — R or C be locally Lebesque inte-
grable. Then,

r—0+ my, (B(z;71))

1
lim ———— — f(x)|dm,, =0
/B W = fw)ldmay

for a.e. € R™.

Proof: We first assume that f is integrable.
We take an arbitrary € > 0 and, through Theorem 7.16, we find g : R™ — C,
continuous on R™, so that fR,,L g— fldm, <e. Forallz € R" and r > 0 we get

s S @)= F @] dima(y) € oo fpn 1)~ (1) dma(y)+
B I8 |g( )= 9(@)| dmn (V) + gy Jpn [9(@) = f(@)] dma(y) <
M(f = 9)(@) + By Jan [90) — 9(@) dma(y) +|g(z) — f(2)].

We set A(f)(z;r) = m fB(w;r) If(y) — f(z)| dm,(y) and the last in-
equality, together with Lemma 10.9, implies

hrnl%lip A(f)(@;r) < M(f = g)(x) + 0+ [g(z) — f(2)].

Now, for every t > 0, we get m. ({x € R™ |t < limsup,_o, A(f)(z;7)}) <
ma({x € R[5 < M(f — g)(x)}) + mp({z € R"|5 < |g(z) - f(2)[}) <
28 [an | f—gldma+2 [q. |f — gl dmy, < 2532 ¢, where the second inequality
is a consequence of Theorem 10.14. Since € is arbitrary, we find, for all ¢ > 0,

m ({x € R"|t < limsup A(f)(z;r)}) =0.
r—0+

By the subadditivity of my,, my({x € R"|limsup, o, A(f)(z;r) # 0}) <
S mE({z e R L £ <limsup, 4, A(f)(z;7)}) = 0 and, hence,

my ({z € R™| limsup A(f)(z;7) #0}) = 0.
r—0+

This implies that limsup, o, A(f)(z;r) = 0 for a.e. = € R" and, since

liminf, o4 A(f)(z;7) > 0 for every z € R", we conclude that
Jim A(f)(z;7) =0
for a.e. x € R™.

Now, let f be locally Lebesgue integrable. We fix an arbitrary &k > 2 and
consider the function h = fxp(;r). Then h is Lebesgue integrable and, for
every x € B(0;k — 1) and every r < 1, we have A(f)(x;r) = A(h)(z;r). By
what we have already proved, this implies that lim, 04+ A(f)(x;r) = 0 for a.e.
x € B(0;k —1). Since k is arbitrary, we conclude that lim,_o+ A(f)(x;7) =0
for a.e. x € R™.
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Definition 10.21 Let f : R® — R or C be locally Lebesgue integrable. The set
Ly of all x € R™ for which lim,_o4 m fB(x;r) If(y) — f(x)|dmp(y) =0
is called the Lebesgue set of f.

Example
If z is a continuity point of f, then x belongs to the Lebesgue set of f. The
proof of this fact is, actually, the proof of Lemma 10.9.

Theorem 10.16 Let f : R* — R or C be locally Lebesgue integrable. Then,
for every x in the Lebesgue set of f, we have

1
lim ————— dm,(y) = f(x).
/B W dm() = 1@

r—0+ my, (B(x; 7))

Proof: Indeed, for all x € Ly we have |7mn(B1(w;r)) fB(E;T) fly)dmy(y) — f(x)’ <

Definition 10.22 Let x € R" and £ be a collection of sets in L, with the
property that there is a ¢ > 0 so that for every E € & there is a ball B(x;r)
with E C B(x;r) and my(E) > emy,(B(x;r)). Then the collection & is called a
thick famaily of sets at x.

Examples

1. Any collection of qubes containing x and any collection of balls containing x
is a thick family of sets at .

2. Consider any collection £ all elements of which are intervals S containing x.
Let Ag be the length of the largest side and ag be the length of the smallest
side of S. If there is a constant ¢ > 0 so that Z—i > c for every S € £, then & is
a thick family of sets at x.

Theorem 10.17 Let f : R® — R or C be locally Lebesgue integrable. Then,
for every x in the Lebesque set of f and for every thick family £ of sets at x,

we have
1

lim
EcE,my,(E)—0+ m,L(E)

/E ) — (@) dma(y) = 0

1
i
Ees,m,llr(r};)ﬂmr my(E)

/ F() dmn(y) = f(z).
E

Proof: There is a ¢ > 0 so that for every E € £ there is a ball B(x;rg) with
E C B(z;rg) and m,(E) > emy(B(x;rg)). If € Ly, then for every ¢ > 0
thereis a ¢ > 0so that r < ¢ implies m fB(w;r) |f(y)—f(z)| dmn(y) < ce.

If my,(E) < cv,0", where v, = m,(B(0;1)), then rg < § and, hence,
ﬁ(;;) Jelf ) = f(@)dma(y) < m fB(z;TE) [f(y) = f(@)|dman(y) <e
This means that impeg m, (2)-0+ mozy Jg 1f () = f(2)]dma(y) = 0.

By | oy Je fW) dma(y) — f(@)] < iy S |f(y) — f(2)] dmy(y) and by
the first limit, we prove the second.
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10.8 Differentiation of Borel measures in R".

Definition 10.23 Any signed or complex measure on (R™,Brn) is called a
Borel signed or complex measure on R™.

Definition 10.24 Let v be a Borel signed measure in R™. We say that v is
locally finite if for every x € R™ there is an open neighborhood U, of x so that
v(U,) is finite.

This definition is indifferent for complex measures, since complex measures
take only finite values.

Proposition 10.26 Let v be a Borel signed measure in R™. Then, v is locally
finite if and only if vt and v~ are both locally finite if and only if |v| is locally
finite.

Proof: Since |v| = vt 4+ v, the second equivalence is trivial to prove. It is also
trivial to prove that v is locally finite if |v| is locally finite.

Let v be locally finite. For an arbitrary € R™ we take an open neigh-
borhood U, of = so that v(U,) is finite. Since v(U,) = v*(U,) — v~ (U,), both
v+ (U,) and v~ (U,) and, hence, |v|(U,) are finite. Therefore, |v| is locally finite.

Proposition 10.27 Let v be a Borel signed measure in R™. Then, v is locally
finite if and only if v(M) is finite for all bounded Borel sets M C R".

Proof: One direction is easy, since every open ball is a bounded set. For the
other direction, we suppose that v is locally finite and, by Proposition 10.26,
that |v| is also locally finite. Lemma 5.7 implies that [v(M)| < |v|(M) < +o0
for all bounded Borel sets M C R™.

Theorem 10.18 Let p be a locally finite Borel signed measure or a complex
measure on R™ with pLm,,. Then,

. p(Blxyr)
e (Ban)

for my-a.e. € R™.

Proof: If p is complex, then |p| is a finite Borel measure on R™. Proposition
10.26 implies that, if p is signed, then |p| is a locally finite Borel measure on
R"™. Moreover, Proposition 10.10 implies that |p| Lm,,. Hence, there exist sets
R, M € Bgr» with MUR =R", M N R = 0 so that R is null for m,, and M is
null for |p|.

We define A(|p|)(x;r) = %, take an arbitrary ¢t > 0 and consider the
set My = {x € M|t <limsup,_ o, A(|p|)(z;7)}.

Since |p| is a regular measure and |p|(M) = 0, there is an open set U so that
My C M CU and |p|(U) < e. For each x € M, there is a small enough 7, > 0

so that t < A(|p|)(x;7s) = Mx;”)))) and B(x;r,) CU.

mp (B(z;7,
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We form the open set V' = U,ea, B(x;r,) and take an arbitrary compact
set K C V. Now, there exist finitely many x1,...,2z,, € M; so that K C
B(z1;74,) U+ U B(Zm;rs,, ). Lemma 10.6 implies that there exist pairwise
disjoint B(i,374,, ), - - B(Tiy 372, ) s0 that my, (B(z1;75, )U- - UB(Zmi7s,,)) <
3" (mn (B(wi,372,,) + -+ + mn(B(xik;rxik))). All these imply that

3

3" 3" 3
mp(K) < 7(|p|(B(fUi1;7‘mil)) + -+ pl(Bwiy; e, ) < ry lpl(U) < i

By the regularity of m, and since K is an arbitrary compact subset of
V, we find that m, (V) < %e. Since M; C V, we have that m}(M;) <
3n

=~ ¢ and, since € is arbitrary, we conclude that M; is a Lebesgue set and

mp (M) = 0. Finally, since {x € M | limsup,_,o, A(|p|)(z;r) # 0} = UZ‘:{M%,
we get that limsup,_ . A(|p|)(z;r) = 0 for my-a.e. 2 € R". Now, from
0 < liminf, o4+ A(|p|)(x;r), we conclude that lim, o+ A(|p|)(x;r) = 0 for m,,-

a.e. r € R".

Lemma 10.10 Let v be a locally finite Borel signed measure on R™. Then v
is o-finite and let v = X\ + p be the Lebesgue decomposition of v with respect
to my,, where A < my, and pLm,. Then both \ and p are locally finite Borel
signed measures.

Moreover, if f is any Radon-Nikodym derivative of \ with respect to my,
then f is locally Lebesgue integrable.

Proof: Since R™ = U2 B(0;k) and v(B(0;k)) is finite for every k, we find
that v is o-finite and Theorem 10.12 implies the existence of the Lebesgue
decomposition of v.

Since pLm,, there exist Borel sets R, N with RUN = X, RN N = () so
that R is null for m, and N is null for p. From A\ < m,,, we see that R is null
for A, as well.

Now, take any bounded Borel set M. Since v(M) is finite, Theorem 10.1
implies that (M N N) is finite. Now, we have A(M) = A(MNR)+AMMNN) =
AMNN)=AMNN)+p(MnNN)=v(MnNN) and, hence, A\(M) is finite.
From v(M) = A(M) + p(M) we get that p(M) is also finite. We conclude that
A and p are locally finite.

Take, again, any bounded Borel set M. Then [, f(x)dm,(z) = \M)
is finite and, hence, [ |f(x)|dmn(z) < +oo. This implies that f is locally
Lebesgue integrable.

Theorem 10.19 Let v be a locally finite Borel signed measure or a Borel com-
plex measure on R™. If f is any Radon-Nikodym derivative of the absolutely
continuous part of v with respect to my, then

L (B
r—0+ my, (B(x; 7))

= f(z)
for my-a.e. € R™.
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Proof: Let v = XA + p be the Lebesgue decomposition of v with respect to m,,
where A < my,, pLm, and A = fm,. If v is signed, Lemma 10.10 implies that
p is a locally finite Borel signed measure and f is locally Lebesgue integrable. If
v is complex, then p is complex and f is Lebesgue integrable. Theorems 10.16
and 10.18 imply

. v(B(x;r)) L 1 "
rl—l>r(l)l+ mp(B(z;r)) r1—>0+ my(B(z;7)) /B(x;,q) F(y) dma(y)
o p(B(zr)
+r1£(r)1+ my(B(x;r)) () +0
= f(x)

for m,-a.e. x € R™.

Theorem 10.20 Let v be a locally finite Borel signed measure or a Borel com-
plex measure on R™. If f is any Radon-Nikodym derivative of the absolutely
continuous part of v with respect to my,, then, for my,-a.e. © € R",

YE) b

EEE,m,,ILI(nE)—»0+ my (E)

for every thick family £ of sets at x.

Proof: If p is the singular part of v with respect to m,,, then |p|Lm,, and, by

Theorem 10.18, lim, g4 M(w;r)))) =0 for m,-a.e. x € R".

my (B(z;r
We, now, take any x for which lim, g+ % = 0 and any thick family

& of sets at x. This means that there is a ¢ > 0 so that for every E € £ there
is a ball B(z;rg) with E C B(z;rg) and m,(E) > em,(B(z;rg)). For every

€ > 0 there is a 6 > 0 so that r < ¢ implies % < ce. Therefore, if
p(E) | <

mu(E) < cv,d™, where v, = my,(B(0;1)), then rp < ¢ and, hence, o ()

lol(E) 1 lpl(B(zire))
mp(E) = ¢ mn(B(zirp))

< €. This means that, for m,-a.e. x € R",

p(E)

=0
Ees,mﬁr}ﬂ)—»o-s- my(E)

for every thick family &£ of sets at x.
We combine this with Theorem 10.17 to complete the proof.

10.9 Exercises.

1. Let v be a signed measure on (X,) and let u1,us be two measures on
(X,Y) at least one of which is finite. If v = yu1 — pgo, prove that v < py
and v~ < po.

2. Let £ be the counting measure on (N,P(N)) and p be the point-mass
distribution on N induced by the function a,, = 2%7 n € N. Prove that
there is an ¢y > 0 and a sequence (Ey) of subsets of N, so that u(Ey) — 0

and §(Fx) > ¢o for all k. On the other hand, prove that f < p.
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. Let v, p1 be o-finite measures on (X7, 31) and v, us be o-finite measures
on (Xo,3s). If 1 < py and ve < g, prove that v; ® v < 1 ® pz and
that

dl/Q

A @vs) v
dpo

T1,T2) =
d(p ® Mz)( 1,22) dpy
for (1 @ pe)-a.e. (x1,22) € X1 x Xo.

(x1) 7 (22)

. Let £ be the counting measure on (R, Br).
(i) Prove that m; < . Is there any f so that m; = ff ?
(ii) Is there any Lebesgue decomposition of § with respect to mq ?

. Generalization of the Radon-Nikodym Theorem.

Let v be a signed measure and y be a o-finite measure on (X, ) so that
v < p. Prove that there is a measurable f : X — R, so that fX fdu
exists and v = fu.

. Generalization of the Lebesgue Decomposition Theorem.

Let v be a o-finite signed measure and p a measure on (X, Y). Prove that
there are unique o-finite signed measures A, p on (X, %) so that A < p,
pLypand v = A+ p.

. Let v, u be two measures on (X,X) with v < p. If X = pu+ v, prove
that v < A. If f: X — [0,400] is measurable and v = fA, prove that
0<f<1pae onX andv= .

~

1—

~

. Conditional Expectation.

Let p1 be a o-finite measure on (X, X), ¥y be a o-algebra with ¥y C ¥ and
p be the restriction of the measure on (X, ¥).
(i) If f: X — R or Cis ¥-measurable and [, fdpu exists, prove that

there is a Yp-measurable fy : X — R or, respectively, C so that J  fodp

exists and
/fod/L:/fdm A € Y.
A A

If f} has the same properties as fy, prove that fj = fo p-a.e. on X.

Any fo with the above properies is called a conditional expectation of
f with respect to X and it is denoted by

E(fX0)-
(ii) Prove that

(a) E(f|X) = f p-a.e. on X,

(b) E(f +glS0) = B(f|Z0) + E(g|S0) p-ae. on X,

() E(sf|%0) = 5E(f[S0) prae. on X,

(d) if g is Xp-measurable, then E(gf|¥Xo) = gE(f|X0) p-a.e. on X,
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10.

11.

12.

13.

(e) if ¥ C Xp C 3, then E(f|X1) = E(E(f|X0)|21) p-a.e. on X.

. Let v be a real or complex measure on (X,¥). If v(X) = |v|(X), prove

that v = |v|.

Let v be a signed or complex measure on (X, ). We say that {A;, Ao, ...}
is a (countable) measurable partition of A € ¥, if Ay € ¥ for all k,
the sets A, As,... are pairwise disjoint and A = A; U Ay U---. Prove
that

+oo
|v|(A) = sup { Z [v(Ag)| | {A1, As, ...} is a measurable partition of A}
k=1

for every A € X.

A wariant of the Hardy-Littlewood mazimal function.

Let f: R™ — R or C be locally Lebesgue integrable. We define

H(f)(x) = sup ———

D B o, O )

for every z € R".

(i) Prove that the set {z € R™ |t < H(f)(z)} is open for every ¢ > 0.

(ii) Prove that -t M (f)(z) < H(f)(z) < M(f)(z) for every z € R™.

One may define other variants of the Hardy-Littlewood maximal function
by taking the supremum of the mean values of |f| over open cubes con-

taining the point x or open cubes centered at the point x. The results are
similar.

The Vitali Covering Theorem.

Let E C R™ and let C be a collection of open balls with the property that
for every z € E and every € > 0 there is a B € C so that x € B and
my,(B) < e. Prove that there are pairwise disjoint By, Ba,... € C so that
mj;(E \ UziolBk) =0.

Points of density.
Let E€ L,. If z € R", we set

my(E N B(x;r))

Dp(z) = lim mn(B(z;7))

whenever the limit exists. If Dg(x) = 1, we say that x is a density point
of F.

(i) If = is an interior point of E, prove that it is a density point of E.

(ii) Prove that a.e. « € E is a density point of E.

(iii) For any « € (0,1) find z € R and E € £; so that Dg(z) = a. Also,
find z € R and F € £ so that Dg(x) does not exist.
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14.

15.

16.

Let f be the Cantor function on [0,1] (see Exercise 4.6.10) extended as
0 on (—00,0) and as 1 on (1,400) and let uy be the Lebesgue-Stieltjes
measure on (R, Br) induced by f. Prove that ppLm;.

Let v be a signed measure on (X,X). Prove that v, v~ < |v| and find
formulas for Radon-Nikodym derivatives % and %.

Let u be a finite measure on (X,Y). We define
d(A, B) = u(AAB), A BeX.

(i) Prove that (X,d) is a complete metric space.

(ii) If v is a real or a complex measure on (X, X)), prove that v is continuous
on X (with respect to d) if and only if v is continuous at (§ (with respect
to d) if and only if v < p.
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Chapter 11

The classical Banach spaces

11.1 Normed spaces.

Definition 11.1 Let Z be a linear space over the field F = R or over the field
F=C andlet || : Z— R have the properties:

(1) llu+oll < flull + [[v]l, for all u,v € Z,

(i) |ku|| = |k|||ull, for allu € Z and k € F,

(i1i) ||u|| = 0 implies u = o, where o is the zero element of Z.
Then, || - || is called @ norm on Z and (Z,|| - ||) is called a normed space.
If it is obvious from the context which || - || we are talking about, we shall

say that Z is a normed space.

Proposition 11.1 If || - || is a norm on the linear space Z, then
(i) |lo]| = 0, where o is the zero element of Z,

(it) || — ul| = |Jull, for allu € Z,

(ii1) ||u]| > 0, for allu € Z.

Proof: (i) [lof| = |0~ o] = [0[|o][ = 0.
(i) [| —ull = [[(=D)ul| = [ = 1[[u] = [ul.
(iii) 0 = [lofl = llu + (=w)[| < [Jull + || = ull = 2[ju]| and, hence, 0 < f[u].

Proposition 11.2 Let (Z,]|-||) be a normed space. If we defined: ZxZ — R
by
d(u,v) = [lu — ]|

for all u,v € Z, then d is a metric on Z.

Proof: Using Proposition 11.1, we have

a. d(u,v) = |lu—v|| >0 for all u,v € Z and, if d(u,v) = 0, then ||lu —v|| =0
and, hence, u — v = o or, equivalently, u = v.

b. d(u,v) = |u =l = || = (v = w)[| = [[o = ul| = d(v, ).

c. d(u,v) = [lu—v| = [[(u—w)+(w=v)|| < [lu—w|[+[w=-v] = d(u, w)+d(w,v).
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Definition 11.2 Let (Z,| - ||) be a normed space. If d is the metric defined in
Proposition 11.2, then d is called the metric induced on Z by | - |.

Therefore, if (Z, ||-]) is a normed space, then (Z, d) is a metric space and we
can study all notions related to the notion of a metric space, like convergence
of sequences, open and closed sets and so on.

Open balls have the form B(u;r) ={v € Z|||lv —u| < r}.

A sequence (u,) in Z converges to u € Z if ||u, —ul]| — 0 as n — +oo. We
denote this by: u, — v in Z or lim,, 4 u, = u in Z.

A set U C Z is open in Z if for every u € U there is an » > 0 so that
B(u;r) CU. Any union of open sets in Z is open in Z and any finite intersection
of open sets in Z is open in Z. The sets §) and Z are open in Z.

A set K C Z is closed in Z if its complement Z \ K is open in Z or,
equivalently, if the limit of every sequence in K (which has a limit) belongs to
K. Any intersection of closed sets in Z is closed in Z and any finite union of
closed sets in Z is closed in Z. The sets () and Z are closed in Z.

A set K C Z is compact if every open cover of K has a finite subcover of K.
Equivalently, K is compact if every sequence in K has a convergent subsequence
with limit in K.

A sequence (uy) in Z is a Cauchy sequence if ||u, — up| — 0 as n,m —
+o00. Every convergent sequence is Cauchy. If every Cauchy sequence in 7 is
convergent, then Z is a complete metric space.

Definition 11.3 If the normed space (Z,| - ||) is complete as a metric space
(with the metric induced by the norm), then it is called a Banach space.

If there is no danger of confusion, we say that Z is a Banach space.
There are some special results based on the combination of the linear and
the metric structure of a normed space. We first define, as in any linear space,

u+A={ut+v|veA} kA ={kv|ve A}

for all A C Z,u € Z and k € F. We also define, for every u € Z and every
k > 0, the translation 7, : Z7 — Z and the dilation I, : Z — Z, by

Tu(V) = v + u, l.(v) = kv

for all v € Z. Tt is trivial to prove that translations and dilations are one-to-one
transformations of Z onto Z and that 7,1 = 7_, and [;! = 1. It is obvious
that u+ A = 7,(A4) and KA = [,(4).

Proposition 11.3 Let (Z,] - ||) be a normed space.

(i) w+ B(v;r) = B(u+v;r) for all u,v € Z and r > 0.

(i1) kB(v;r) = B(kv; |k|r) for allv e Z, k € F\ {0} and r > 0.

(iii) If u, — u and v, — v in Z, then u, +v, - u+v in Z.

() If K, — Kk in F and u,, — w in Z, then kyu, — ku in Z.

(v) Translations and dilations are homeomorphisms. This means that they,
together with their inverses, are continuous on Z.
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(vi) If A is open or closed in Z and u € Z, then uw+ A is open or, respectively,
closed in Z.
(vii) If A is open or closed in Z and k € F\{0}, then kA is open or, respectively,
closed in Z.

Proof: (i) w € u+B(v;r) if and only if w—u € B(v;r) if and only if |[w—u—v]| <
r if and only if w € B(u + v;7).

(ii) w € kB(v;r) if and only if + w € B(v;r) if and only if || w — v|| < r if and
only if |jw — kv|| < |k|r if and only if w € B(kv; |k|r).

(i) [[(un +vn) — (w+0)|| < [Jup —ull + [Jvn —v]| — 0 as n — +o0.

(iv) ||knun — kull < |&pll|un — ull + |&n — &]|Ju|| — 0 as n — 400, because (k)
is bounded in F.

(v) If v, — v in Z, then 7,(v,) = v+ v, — u+v = 7,(v), by (iii). Also,
ls(vy) = Ky, — kv = 1, (v), by (iv). Therefore, 7, and [, are continuous on Z.
Their inverses are also continuous, because they are also a translation, 7_,,, and
a dilation, [ L, respectively.

(vi) u+ A = 771 (A) is the inverse image of A under the continuous 7_,,.
(vii) kA = 17*(A) is the inverse image of A under the continuous Ly

As in any linear space, we define a linear functional on Z to be a function
l: Z — F which satisfies

lu+v)=1(u)+1(v), l(ku) = kl(u)

for every u,v € Z and k € F. If | is a linear functional on Z, then (o) = [(00) =
0l(0) = 0 and I(—u) = I((-1)u) = (=1)i(u) = —l(u) for all w € Z. We define
the sum [y + I3 : Z — F of two linear functionals l1,ls on Z by

(ll + lg)(u) = ll(u) + l2(u), [TRSA
and the product kl : Z — F of a linear functional [ on Z and a k € F' by
(k1) (u) = Kl(u), u € Z.

It is trivial to prove that I + l5 and kl are linear functionals on Z and that
the set Z’ whose elements are all the linear functionals on Z,

Z'" ={l]1 is a linear functional on Z},

becomes a linear space under this sum and product. Z’ is called the algebraic
dual of Z. The zero element of Z’ is the linear functional o : Z — F with
o(u) = 0 for every u € Z and the opposite of a linear functional [ on Z is the
linear functional — : Z — F with (—I)(u) = —l(u) for every u € Z.

Definition 11.4 Let (Z,]|-||) be a normed space andl € Z' a linear functional
on Z. Then | is called a bounded linear functional on Z if there is an
M < +o00 so that

[1(w)] < MJull

for every u € Z.
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Theorem 11.1 Let (Z,] - ||) be a normed space and l € Z'. The following are
equivalent.

(1) 1 is bounded.

(i) 1 : Z — F is continuous on Z.

(iti) 1 : Z — F is continuous at o € Z.

Proof: Suppose that [ is bounded and, hence, there is an M < +o0o so that
[1(w)| < M|ju|| for every u € Z. If u,, — win Z, then [I(u,)—1(u)| = |[(up—u)| <
M]|uy, — ul| — 0 as n — 400 and, thus, I(u,) — I(u) in F as n — 4o00. This
says that [ is continuous on Z.

If [ is continuous on Z, then it is certainly continuous at o € Z.

Suppose that [ is continuous at o € Z. Then, for € = 1 there exists a § > 0 so
that [I(u)] = |l(u) — I(0)] < 1 for every u € Z with |ju|| = |ju — o] < §. We take
an arbitrary u € Z\ {0} and an arbitrary ¢ > 1 and have that || ﬁ ul| = 8 <.

Therefore, |l(ﬁ u)| < 1, implying that |I(u)] < %|lul|. This is trivially true
also for u = o and we conclude that |I(u)] < % |lu|| for every u € Z. For the
arbitrary u € Z, letting ¢t — 1+, we get |I(u)| < M]|ul|, where M = %. This

5
says that [ is bounded.

Definition 11.5 Let (Z,||-||) be a normed space. The set of all bounded linear
functionals on Z or, equivalently, of all continuous linear functionals on Z,

Z* ={l]|1 is a bounded linear functional on Z},
1s called the topological dual of Z or the norm-dual of Z.

Proposition 11.4 Let (Z,||-]|) be a normed space and ! a bounded linear func-
tional on Z. Then there is a smallest M with the property: |l(u)| < M|u|| for
every u € Z. This My is characterized by the two properties:

(i) 11w)] < Mollul] for every u € Z,

(1) for every m < My there is a u € Z so that |l(u)] > m/||ul|.

Proof: We consider
My = inf{M | |l(u)| < M||u|| for every u € Z}.

The set L = {M | |l(u)| < M||ul|| for every u € Z} is non-empty by assump-
tion and included in [0, +00). Therefore My exists and My > 0. We take a
sequence (M,) in L so that M,, — My and, from |l(u)] < M,|u| for every
u € Z, we find |l(u)] < Mpl||ul|| for every u € Z.

If m < My, then m ¢ L and, hence, there is a u € Z so that |l(u)| > m/||u].

Definition 11.6 Let (Z,] - ||) be a normed space and I a bounded linear func-
tional on Z. The smallest M with the property that |l(u)| < M||lul| for every
u € Z is called the norm of | and it is denoted by ||1]|+.

Proposition 11.4, which proves the existence of ||I||., states also its charac-
terizing properties:
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1. |l(w)] < ||| «||we|| for every u € Z,
2. for every m < ||l||« there is a u € Z so that |I(u)| > m||u].

The zero linear functional o : Z — F is bounded and, since |o(u)| = 0 < 0O||u]|
for every u € Z, we have that

lofl« = 0.

On the other hand, if I € Z* has ||I||. = 0, then |I(u)| < O]ju|| = 0 for every
u € Z and, hence, [ = o is the zero linear functional on Z.

Proposition 11.5 Let (Z,] - ||) be a normed space and | € Z*. Then

l(u
12l = sup MWl g [l(w)] = sup [i(u)]
uEZ,u#to ||U|| wEZ,||ul|=1 uw€Z,||ul|<1

Proof: Every u with [Ju|| = 1 satisfies |lul| < 1. Therefore, sup,¢ 7 |ju=1 [[(u)] <

SUPye 7 [ul| <1 [1(u)].
Writing v = i for every u € Z \ {0}, we have that ||v|| = 1. Therefore,

SupuEZ,u;éo % = SupueZ,u;éo |Z(H11ji|\)’ < SupuEZ,HuH:I ‘l(u)|

For every u with ||ul]] < 1, we have |l(u)] < ||l|l<|lu]l < ||I]|+ and, thus,
SUPyez, fuf<1 (W] < [[2]]+

If we set M = Sup,cz .20 %, then ”H(;Jl)\l < M and, hence, |I(u)] < M||ul|
for all u # o. Since this is obviously true for u = o, we have that ||/||. < M and
this finishes the proof.

Proposition 11.6 Let (Z,| - ||) be a normed space, 1,11,la be bounded linear
functionals on Z and k € F. Then Iy + 1y and kl are bounded linear functionals
on Z and

1+ Lol < Ml + M2l listlle = Isll12] -

Proof: We have that |(1y + )(w)| < [11 ()] + [l ()] < i llllel + izl ] =
(1]l + 2]l )||w|| for every w € Z. This implies that {3 + l2 is bounded and
that ||l + lofl« < [|la][« + [[l2]ls-

Similarly, |(kl)(w)| = |&||l(w)] < |&|||l]|«|lu|| for every w € Z. This implies
that ! is bounded and that |||« < |&|||l||«. If & = 0, then the equality is
obvious. If k # 0, to get the opposite inequality, we write |s||l(u)| = |(&l)(u)| <
I« [[u]l. This implies that [(u)] < L=

2], < Il

[

u|| for every w € Z and, hence, that

Proposition 11.6 together with the remarks about the norm of the zero func-
tional imply that Z* is a linear subspace of Z’ and that || - ||« : Z* — R is a
norm on Z*.

Theorem 11.2 If (Z,|| - ||) is a normed space, then (Z*,| - ||«) is a Banach
space.
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Proof: Let (I,,) be a Cauchy sequence in Z*. For all u € Z, [l,,(u) — I (u)| =
[l = L) ()] < |l — L]« |lu]l — 0 as n,m — +o00. Thus, (I,(u)) is a Cauchy
sequence in F' and, hence, converges to some element of F'. We definel: Z — F
by

l(u) = nEIEOO ln(u)
for every u € Z.

For every u,v € Z and k € F we have l(u 4+ v) = limy 400 ln(u +v) =
limy, oo ln(u) + limy, 4 oo Iy (v) = U(u) + 1(v) and I(ku) = limy,— 400 In(kKu) =
klimy, 400 In(u) = kl(w). Therefore, | € Z'.

There is N so that ||l, — l|l« < 1 for all n,m > N. This implies that
[Tn(w) = U (w)] < [l — Unll«llull < |lu]| for all w € Z and all n,m > N and,
taking the limit as n — 400 and, taking m = N, we find |I(u) — I (u)| < ||u|
for all w € Z. Therefore, |I(uw)| < [In(w)|+ |lull < (In]l«+1)||u| for every u € Z
and, hence, [ € Z*.

For an arbitrary € > 0 there is N so that ||l,, — L]« < € for all n,m > N.
This implies |l,(uw) — ln(w)] < |lln = Lnll«llu]l < €|lu|| for all u € Z and all
n,m > N and, taking the limit as m — 400, we find |, (u) — l(u)| < €||lu|| for
all w € Z and all n > N. Therefore, ||l,, — ||« < € for all n > N and, hence,
lp, = lin Z*.

Definition 11.7 Let Z and W be two linear spaces over the same F and a
function T : Z — W. T is called a linear transformation or a linear
operator from Z to W if

T(u+v)=T(u)+T(v), T(ku) = kT (u)
for allu,v € Z and all k € F.

The following are familiar from elementary linear algebra. Let T': Z — W
be a linear transformation. 7' is one-to-one if and only if T'(u) = o (the zero
element of W) implies v = o (the zero element of Z). The subset N(T') = {u €
Z|T(u) = o} of Z, called the kernel of T, is a linear subspace of Z. Similarly,
the subset R(T) = {T(u)|u € Z} of W, called the range of T, is a linear
subspace of W.

The linear transformation T : Z — W is one-to-one if and only if N(T') = {o}
and T is onto if and only if R(T) = W.

If the linear transformation T': Z — W is one-to-one and onto, then the
inverse function 771 : W — Z is also a linear transformation. In this case we
say that the linear spaces Z and W are identified. By this we mean that we
may view the two spaces as a single space whose elements have two ((names)):
we view the elements u of Z and T'(u) of W as a single element with the two
names v and T'(u). In fact the linear relations between elements are unaffected
by changing their ((names)): z = u + v if and only if T(z) = T(u) + T'(v) and
z = ku if and only if T'(z) = «T'(u).

If the linear transformation T : Z — W is one-to-one but not onto, then
we may consider the restriction T': Z — R(T'). This is a linear transformation
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which is one-to-one and onto and, thus, we may say that the linear spaces Z
and R(T) are identified and that Z is identified with a linear subspace of W or
that R(T') is a ((copy)) of Z inside W.

Definition 11.8 Let (Z,|| - ||z) and (W,]| - |lw) be two normed spaces and a
linear transformation T : Z — W. We say that T is a bounded linear trans-
formation from Z to W if there exists an M < +o0o so that

1T (u)llw < Mullz
forallu e Z.

Theorem 11.3 Let (Z,]-||z) and (W, ||-|lw) be two normed spaces and a linear
transformation T : Z — W . The following are equivalent.

(i) T is bounded.

(1)) T : Z — W is continuous on Z.

(1)) T : Z — W is continuous at o € Z.

Proof: Suppose that T is bounded and, hence, there is an M < 400 so that
1T (w)|lw < M|u|z for every w € Z. If w,, — w in Z, then | T (uy,) — T(u)||lw =
1T (wn —w)|lw < M|jun —u|lz — 0 as n — +o00 and, thus, T'(u,) — T(u) in W
as n — —+o0o. This says that T is continuous on Z.

If T is continuous on Z, then it is certainly continuous at o € Z.

Suppose that T' is continuous at o € Z. Then, for ¢ = 1 there exists a
d > 0 so that ||T(uw)|lw = [|[T(w) — T(o)|lw < 1 for every u € Z with |Jul]|z =
lu —ollz < 6. We take an arbitrary v € Z \ {0} and an arbitrary ¢ > 1
and have that Hm uHZ = % < 6. Therefore, ’T(L u)HW < 1, implying

tllullz

that ||T'(u)[lw < %|lullz. This is trivially true also for u = o and, hence,
I1T(u)||w < L |lul|lz for all u € Z. Letting t — 14, we find ||T(u)||lw < M||u| z,
where M = 5. This says that T" is bounded.

Proposition 11.7 Let (Z,|| - ||z) and (W, || - [lw) be two normed spaces and a
bounded linear transformation T : Z — W. Then there is a smallest M with
the property: |T(w)||lw < M||ullz for every w € Z. This My is characterized by
the two properties:

(1) | T(w)llw < Mollullz for every u e Z,

(ii) for every m < My there is a w € Z so that | T(u)|lw > m|ul|z.

Proof: We consider
My = inf{M | |T(u)||lw < M||u| z for every u € Z}.

The set L = {M ||| T(u)||w < M||u||z for every u € Z} is non-empty by
assumption and included in [0, +00). Therefore My exists and My > 0. We take
a sequence (M,) in L so that M,, — My and, from ||T(u)|lw < M,||u|z for
every u € Z, we find || T(u)||lw < Mol||ul|z for every u € Z.

If m < My, then m ¢ L and, hence, there is a v € Z so that || T(u)||w >
m/ulz.
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Definition 11.9 Let (Z,] - ||z) and (W,|| - |lw) be two normed spaces and a
bounded linear transformation T : Z — W. The smallest M with the property
that |T(uw)|lw < M||u||z for every w € Z is called the norm of T and it is
denoted by ||T|-

By Proposition 11.7, which proves the existence of ||T'||, we have:
L TW)|lw < ||T|||lu||lz for every u € Z,
2. for every m < ||T'|| there is a u € Z so that ||T(u)||lw > m||ulz.

The zero linear transformation o : Z — W is bounded and, since |jo(u)||w =
0 < 0||lul|z for every u € Z, we have that

[lof| = 0.

On the other hand, if T is a bounded linear transformation with ||7'|| = 0,
then | T(u)||lw < 0||lu|lz = 0 for every u € Z and, hence, T = o is the zero linear
transformation.

Proposition 11.8 Let (Z,] - ||z) and (W, || - |lw) be two normed spaces and a
bounded linear transformation T : Z — W. Then

T(u w
ITl= sup Z@IW _ s n@ = sup T
wezuto |ullz weZ ||ul z=1 weZ,||ullz<1

Proof: Every u with ||u||z = 1 satisfies ||u||z < 1. This, clearly, implies that
SUPyeZz,||ullz=1 |7 (u)lw < SUPyez,||ul| z<1 17 ()l
Writing v = i for every u € Z \ {0}, we have that ||v||z = 1. Therefore,

T
SUDye 7,urt0 LTt = 5Dy 7,00 | T (1) I < SWuezuf =1 1T ()]Iw

For every u with ||u||z < 1, we have | T(u)|lw < ||T||||ullz < |T|| and, thus,
SUPye 7, ull» <1 1T (W]lw < || T

If we set M = sup,ecz 20 HTH(;H)!W’ then % < M and this implies
IT(w)|lw < M||ul|z for all u # o. Since this is obviously true for u = o, we have
that || T|| < M and this finishes the proof.

Definition 11.10 Let (Z,] - ||z) and (W, || - |lw) be two normed spaces and a
bounded linear transformation T : Z — W

If T is onto W and | T (u)||lw = ||ul|z for every u € Z, then we say that T
is an tsometry from Z onto W or an isometry between Z and W.

If [T (w)|lw = |lullz for every w € Z (but T is not necessarily onto W), we
say that T is an isometry from Z into W.

Proposition 11.9 Let (Z,| - |lz) and (W, || - |lw) be two normed spaces.

(i) If T is an isometry from Z into W, then T is one-to-one.

(ii) If T is an isometry from Z onto W, then T~ is also an isometry from W
onto Z.
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Proof: (1) f T'(u) = T(v), then 0 = || T(u) =T () ||lw = |[T(u—v)||lw = |Jlu—v| 2z
and, hence, u = v.
(ii) From (i) we have that T is one-to-one and, thus, the inverse mapping 7! :
W — Z exists. If w,wy,ws € W and k € F, we take the (unique) w,uj,us € Z
so that T(u) = w,T(u1) = wy and T(uz) = we. Then T(us + u2) = T'(u1) +
T(uz) = wy + wo and, hence, T~ (wy + wz) = uy +us = T~ (wy) + T (ws).
Also, T'(ku) = kT (u) = kw and, hence, T~ !(kw) = ku = KT~ (w). These
imply that 77! : W — Z is a linear transformation.

Moreover, [T~ w)||z = ||lullz = ||T(uw)|lw = ||w|lw. Therefore, T~ is an
isometry from W onto Z.

If T is an isometry from Z onto W, then it is not only that we may identify Z
and W as linear spaces (see the discussion after Definition 11.7) but we may also
identify them as metric spaces: the distances between elements are unaffected
by changing their ((names)): ||T(u) — T()||lw = |[T(uw — v)||lw = ||lu — v z.

If T is an isometry from Z into W, then, clearly, T is an isometry from Z
onto R(T) and now we may identify Z with the subspace R(T) of W or we may
view R(T) as a ((copy)) of Z inside W.

11.2 The spaces LP(X, %, ).

In this whole section and the next, (X, X, 1) will be a fixed measure space.

Definition 11.11 If 0 < p < +o0, we define the space LP(X,3, ) to be the
set of all measurable functions f : X — F, where F =R or F = C, with

[ 18 d < o
X

Observe that the space £1(X,X,u) is the set of all functions which are
integrable over X with respect to p.

Whenever any of X, ¥, p is uniquelly determined by the context of discus-
sion, we may omit it from the symbol of the space. Therefore, we may simply
write LP or LP(X) or LP(u) etc.

Proposition 11.10 £L? is a linear space over F.
Proof: We shall use the trivial inequality
(a+b)P < 2P(aP 4+ bP), 0<a,b.

This can be proved by (a+b)? < (2max{a,b})? = 2P max{a?, b’} < 2P(aP +bP).

Suppose that f1, fo € £LP. Then both f; and f are finite a.e. on X and,
hence, fi+ fo is defined a.e. on X. If f; + f5 is any measurable definition of f;+
f2, then, using the above elementary inequality, |(f1 + f2)(x)|? < 2P(| f1(z)|? +
| f2(x)|P) for a.e. € X and, hence,

[apenpdn<e [ 1arder [ (P <o
X X X
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Therefore f1 + fo € LP.
If f € LPand k € F, then

[ verpdu =1 [ 157 dn < 40,
X X

Therefore, xf € LP.

Definition 11.12 Let f : X — F be measurable. We say that f is essentially
bounded over X (with respect to ) if there is M < 400 so that |f| < M
a.e. on X.

Proposition 11.11 Let f : X — F be measurable. If f is essentially bounded
over X, then there is a smallest M with the property: |f| < M a.e. on X. This
smallest My is characterized by:

(1) |f] < My a.e. on X,

(i) p({z € X ||f(x)] > m}) >0 for every m < Mp.

Proof: We consider the set A ={M||f| < M a.e. on X} and the
Moy =inf{M ||f] < M a.e. on X}.

The set A is non-empty by assumption and is included in [0, +00) and, hence,
My exists.

We take a sequence (M,,) in A with M,, — My. From M, € A, we find
p{z € X||f(z)| > M,}) = 0 for every n and, since {z € X ||f(z)| > Mo} =
Utei{z € X||f(z)| > M,}, we conclude that pu({x € X||f(z)| > Mo}) = 0.
Therefore, |f| < My a.e. on X.

If m < My, then m ¢ A and, hence, u({z € X ||f(z)| > m}) > 0.

Definition 11.13 Let f : X — F be measurable. If f is essentially bounded,
then the smallest M with the property that |f| < M a.e. on X is called the
essential supremum of f over X (with respect to 1) and it is denoted by

ess-supx .. (f).

Again, we may simply write ess-sup(f) instead of ess-supx,,.(f).
The ess-sup(f) is characterized by the properties:

1. |f| < ess-sup(f) a.e. on X,

2. for every m < ess-sup(f), we have u({z € X ||f(x)| > m}) > 0.

Definition 11.14 We define L>(X, 3, i) to be the set of all measurable func-
tions f : X — F which are essentially bounded over X.

Proposition 11.12 £ is a linear space over F'.

Proof: If f1, fo € L°°, then there are sets A1, As € 3 so that pu(A§) = u(45) =0
and | f1] < ess-sup(f1) on Ay and |f2| < ess-sup(fz) on Ay. If weset A = A1NAs,
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then we have p(A¢) =0 and | f1 + fa| < |fi|+|f2| < ess-sup(f1)+ess-sup(f2) on
A. Hence f1 + f5 is essentially bounded over X and

ess-sup(f1 + f2) < ess-sup(f1) + ess-sup(f2).

If f € L£>® and k € F, then there is A € 3 with u(A¢) = 0 so that |f] < ess-
sup(f) on A. We, now, have |kf| < |k|ess-sup(f) on A. Hence xf is essentially
bounded over X and ess-sup(kf) < |k|ess-sup(f). If K = 0, this inequality,
obviously, becomes equality. If k # 0, we apply the same inequality to % and
rf and get ess-sup(f) = ess-sup(L(kf)) < \%I ess-sup(kf). Therefore

ess-sup(kf) = |k|ess-sup(f).
Definition 11.15 Let 1 < p < +oo. We define

1% , fl<p< 4o
p=4q +oo, ifp=1

1, if p = 4o0.

We say that p’ is the conjugate of p or the dual of p.

The definition in the cases p =1 and p = +oo is justified by lim, .1 z% =
+oo and by lim,_, 4 p’%l =1.

It is easy to see that, if p’ is the conjugate of p, then 1 < p’ < +oo and p is
the conjugate of p’. Moreover, p,p’ are related by the symmetric equality

Lemma 11.1 Let 0 <t < 1. For every a,b > 0 we have
a'b' =t <ta+ (1 —t)b.

Proof: If b = 0 the inequality is obviously true: 0 < ta.

If b > 0, the inequality is equivalent to ($)" <% 41—t and, setting = = ¢,
it is equivalent to ! < tx +1 —t, 0 < x. To prove it we form the function
f(z) = ' — tz on [0,400) and we easily see that it is increasing in [0,1] and
decreasing in [1,+00). Therefore, f(z) < f(1) =1 —t¢ for all z € [0, +00).

Theorem 11.4 (Hélder’s inequalities) Let 1 < p,p’ < 400 and p,p’ be
conjugate to each other. If f € LP and g € LP , then fg € L' and

A
o7

/leg\dué (/le”du)'lj(/xlgl”’du)" , 1< pp <4oo,

/ |fg|du§/ |fldp - ess-sup(g), p=1,p = 400,
X X

/X ol dy < ess-sup(f) /X gldu, =40y =

231



Proof: (a) We start with the case 1 < p,p’ < +o0.

If [|fIPdp=0orif [y l9|P" dpe = 0, then either f =0 a.e. on X or g =0
a.e. on X and the inequality is trivially true. It becomes equality: 0 = 0.

So we assume that A = [, [f[Pdu > 0 and B = [, lg|P" dp > 0. Applying

Lemma 11.1 with t = %,l—tzl—%: i and a = |f(j)‘p,b: |g(zB)|p , we have
that )
ol 1lre 1l
AvBy p A p B

a.e. on X. Integrating, we find

1 1 1
— i/Ifglduidr—,
Ar» B» JX p p

and this implies the inequality we wanted to prove.

(b) Now, let p =1, p’ = +o0. Since |g| < ess-sup(g) a.e. on X, we have that
|fg] < |f| ess-sup(g) a.e. on X. Integrating, we find the inequality we want to
prove.

(c) The proof in the case p = 400, p’ =1 is the same as in (b).

Theorem 11.5 (Minkowski’s inequalities) Let 1 < p < +o0. If f1, fo € L?,
then

(/Xf1+f2|”du);S(/lell”du);Jr(/)(le”du);, 1<p<+oo,

ess-sup(fi1 + f2) < ess-sup(f1) + ess-sup(fa), p = +o0.

Proof: The case p = 400 is included in the proof of Proposition 11.12. Also,
the case p = 1 is trivial and the result is already known. Hence, we assume
1 <p<+o0.

We write

i+ folP < (Ufl+ 1 f2DIfs + 1P~ = 1fallf + folP 7+ [ follfr + folP 7

a.e. on X and, applying Holder’s inequality, we find

1
!

/X|f1+f2|Pdu < (/X|f1Pdu);(/X|f1+f2|(p—1)p/ du)p
+(/X|f2|1’d,u)5(/x‘f1+f2‘(p71)p/dﬂ>p

= (/X|f1pdli>;(/X|f1+f2|de)p
+(/X|f2|”du);(/xf1+f2pdu)pl/-

Simplifying, we get the inequality we want to prove.

[
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Definition 11.16 Let 1 < p < 400 and (f,) be a sequence in LP and f € LP.
We say that (f,) converges to f in the p-mean if

/ o= fPdu—0,  1<p<too,
X

ess-sup(fn — f) =0,  p=+oo
as n — +o0o. We say that (fy,) is Cauchy in the p-mean if

\/|fn7fm|pd,u*>oa 1 <p < +oq,
X

ess-sup(fr. — fm) — 0, p = 400

as n,m — +00.

It is easy to see that, if (f,,) converges to f in the p-mean, then (f,,) is Cauchy
in the p-mean. Inldeed, ifl <p< +O10’ then, by Minkowslki’s inequalities,
(fX |fn7fm|pd:u‘)p S (fX |fn7f|pd/l)P +(IX |fm,f‘pdu)p — 0 as m,n —
+o00. The proof is identical if p = +oo.

The notion of convergence in the 1-mean coincides with the notion of con-
vergence in the mean on X. Theorem 11.6 is an extension of Theorem 9.1.

Theorem 11.6 If (f,) is Cauchy in the p-mean, then there is f € LP so that
(fn) converges to f in the p-mean. Moreover, there is a subsequence (fy,) which
converges to f a.e. on X.

As a corollary: if (fn) converges to f in the p-mean, there is a subsequence
(fn,) which converges to f a.e. on X.

Proof: (a) We consider first the case 1 < p < 4o0.
First proof. Since each f,, is finite a.e. on X, there is A € ¥ so that u(A€) =0
and all f,, are finite on A.

We have that, for every k, there is ny so that [y [fn — fm[Pdp < 2% for
every n,m > ng. Since we may assume that each nj is as large as we like,
we inductively take (ng) so that ny < ngy; for every k. Therefore, (fy,,) is a
subsequence of (fy).

From the construction of ny and from ny < ngy1, we get that

1
/}(|fnk+1 *fnk|pd,uz<27p
for every k. We define the measurable function G : X — [0, +0o0] by

G: ;C‘r;.ol|fnk+1_fnk|, OnA )
Oa on A°

If
Gk = {lef_ll |fnk,+1 - fnk|7 on A
0

b
, on A€
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S =

then ( [, G% du)% <SR (S [ fansr — FanlPdu)? < 1, by Minkowski’s in-
equality. Since Gx T G on X, we find that fX GPdp < 1 and, thus, G < +00
a.e. on X. This implies that the series Zﬁ;’ol(fnkﬂ () = fn,(z)) converges for
a.e. © € A. Therefore, there is a B € ¥, B C A so that u(A\ B) = 0 and
2‘;’01(]”%+1 (x) — fn,(x)) converges for every x € B. We define the measurable
f: X — F by
f= {fm + Z;:{(fnkﬂ — fax), on B
0, on B¢

On B we have that f = f,, +1mg .y oo Sop sy (Frgss — ) = WKt oo g

and, hence, (f,,) converges to f a.e. on X.

We, also, have on B that |fu, — f| = [fax — far = Sones (Fanss — frn)| =
|Z£(:_11(fnk+1 B fnk) - $;.<1)(fnk+1 - fnk)| < ZZ_SKUCHMA - fTLk| < G for
every K and, hence, |fn, — f|P < GP a.e. on X for every K. Since we have
Jx G?dp < 400 and that |f,, — f| — 0 a.e. on X, we apply the Dominated
Convergence Theorem and we find that

J o= 1P dn =0

as K — +4o0. .
1 1
From np — oo, we get ([ [fe — fIPdw)? < ([x [fe — fuulPdp)” +

1
(Jx |fan = fIPdp)” — 0 as k — +oo0 and we conclude that (f,) converges
to f in the p-mean.
Second proof. For every € > 0 we have that u({z € X ||fn(z) — fin(2)] > €}) <

1
%(fx [fn — fl? du) ? and, hence, (f,) is Cauchy in measure on X. Theorem
9.2 implies that there is a subsequence (f,, ) which converges to some f a.e. on
X.
Now, for every e > 0 there is an N so that [y [fn — fm[?dp < € for all
n,m > N. Since ny — +00 as k — 400, we use m = ny, for large k and apply
the Lemma of Fatou to get

/ |fn—f|i"du§liminf/ |frn = frn|Pdp < €

for all n > N. This, of course, says that (f,) converges to f in the p-mean.
(b) Now, let p = +oo.

For each n,m we have a set A, € ¥ with u(Ay5,,,) =0 and |f, — fm| <
ess-sup(fn, — fm) on A, ;. We form the set A = Ni<pmAn,m and have that
w(A®) =0 and |f, — fin| < ess-sup(f,, — fim) on A for every n, m. This says that
(fn) is Cauchy uniformly on A and, hence, there is an f so that (f,) converges
to f uniformly on A. Now,

ess-sup(fn, — f) < sup|fn(z) — f(x)] = 0
€A
as n — +o00.
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If, for every f € LP, we set

Ny(f) = { (Jy lfIPdp)¥ . i1 <p < too
’ ess-sup(f) if p = 400,

then, Propositions 11.10 and 11.12 and Theorem 11.5 imply that the function
N, : LP — R satisfies

L Ny(fr + F2) < Ny(f1) + Np(f2),
2. Ny(kf) = [KIN,(f)

for every f, f1, fo € LP and k € F.

The function IV, has the two properties of a norm but not the third. Indeed,
N,(f) = 0 if and only if f = 0 a.e. on X. The usual practice is to identify
every two functions which are equal a.e. on X so that IV, becomes, informally,
a norm. The precise way to do this is the following.

Definition 11.17 We define the relation ~ on LP as follows: we write fi ~ fo
fol = f2 a.e. on X.

Proposition 11.13 The relation ~ on LP is an equivalence relation.

Proof: 1t is obvious that f ~ f and that, if fi ~ fo, then fo ~ f;. Now, if
f1 ~ foand fo ~ f3, then there are A, B € ¥ with pu(A°) = u(B€) = 0 so that
f1 = f2on Aand fy = f3 on B. This implies that u((ANB)¢) =0and f; = f3
on AN B and, hence, f; ~ f3.

As with any equivalence relation, the relation ~ defines equivalence classes.
The equivalence class [f] of any f € LP is the set of all f € L£P which are
equivalent to f:

[f1=Af eLr|f ~f}

Proposition 11.14 Let f1, fo € LP. Then
(1) [f1] = [f2] if and only if f1 ~ fa if and only if f1 = f2 a.e. on X.
(ii) If (Al N [f2] # 0, then [fi] = [f2].

Moreover, LP = Ufecp [f].

Proof: (i) Assume f; ~ fo. If f € [f1], then f ~ f1. Therefore, f ~ fy and,
hence, f € [f2]. Symmetrically, if f € [f2], then f € [f1] and, thus, [f1] = [f2]-
If [f1] = [f2], then fi € [f1] and, hence, f; € [fs]. Therefore, fi ~ fo.
(ii) If f € [f1] and f € [f2], then f ~ f; and f ~ f2 and, hence, f; ~ f. This,
by the result of (i), implies [f1] = [f2].
For the last statement, we observe that every f € £ belongs to [f].

Proposition 11.14 says that any two different equivalence classes have empty
intersection and that £P is the union of all equivalence classes. In other words,
the collection of all equivalence classes is a partition of LP.
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Definition 11.18 We define
LP(X, 3, p) = LY(X, 5, )/ ={[f] | f € LP(X, 5, )}

Again, we may write L? or LP(X) or LP(u) etc.

The first task is to carry addition and multiplication from LP over to LP.
Proposition 11.15 Let f, f1, fo, f/, f1, f5 € LP and k € F.
(i) If f1 ~ fi and fo ~ f3, then fi + fa ~ f{ + f5.
(i) If f ~ ', then kf ~ Kf’.
Proof: (i) There are Aj, Ay € ¥ with pu(AS) = p(A4S) = 0 so that f1 = f{ on
A; and both f1, f{ are finite on A; and, also, f = f} on Ay and both fs, f] are
finite on Ay. Then p((A41 NA2)¢) =0 and f1 + fo = f] + f4 on A; N Ay. Hence,

fit fa~ fi+ 13
(i) There is A € ¥ with u(A°) =0 so that f = f' on A. Then, kf = kf on A
and, hence kf ~ kf’.

Because of Proposition 11.14, another way to state the results of Proposition
11.15 is:

L[l = [A1] and [fo] = [fa] imply [f1 + fi] = [f2 + f2),
2. [f] = [f'] implies [rf] = [k f].
These allow the following definition.

Definition 11.19 We define addition and multiplication in LP as follows:

Lf1] + [fe] = [f1 + fol, &[f] = [k f].

It is a matter of routine to prove, now, that the set LP becomes a linear
space under this addition and multiplication. Then LP is a linear space over F.

The zero element of LP is the equivalence class [0] of the function o which is
identically 0 on X. The opposite of an [f] is the equivalence class [— f].

The next task is to define a norm on L?.

Proposition 11.16 Let f1,fo € LP. If f1 ~ f2, then Nu(f1) = Np(f2) or
equivalently

/Ifl\pdu:/ Bl de,  1<p< o,
X X

ess-sup(f1) = ess-sup(fa), p = +o0.

Proof: 1t is well known that f; = f; a.e. on X implies the first equality. Re-
garding the second equality, we have sets B, A1, Az € ¥ with p(B°) = pu(Ag) =
1(AS) = 0so that fi = fo on B, |f1] < ess-sup(f1) on Ay and |fa| < ess-sup(fa)
on As. Then, the set A = BN A; N Ay has u(A°) = 0. Moreover, |f1]| = |f2|
ess-sup(fa) on A and, hence, ess-sup(f1) < ess-sup(fz2). Also, |f2] = |f1]
ess-sup(f1) on A and, hence, ess-sup(fa) < ess-sup(fi).

<
<

An equivalent way to state the result of Proposition 11.16 is

236



L [fl] = [fZ] implies fx |f1‘p dﬂ“ = fX |f2|pd/~1’7 if 1 § p < +007
2. [f1] = [f=] implies ess-sup(f1) = ess-sup(fa2), if p = +o0.
These allow the

Definition 11.20 We define, for every [f] € LP,

_ (S lfPdw), if1<p<+oo
11l = Ny() {gss)gsup(f)) 1p<

Proposition 11.17 The function | - ||, is a norm on LP.

Proof: We have |[[fi]+ [fa]llp = [I[f1 + folllp = Np(fr+ f2) < Np(f1) + Np(f2) =
ILAlllp + [[[f2]llp- Also I&[f]ll, = 5 fll, = Np(£f) = [£[Np(f) = |lILf]llp-

If |[f]ll, = 0, then N,(f) = 0. This implies f = 0 a.e. on X and, hence,
f ~ o or, equivalently, [f] is the zero element of LP.

In order to simplify things and not have to carry the bracket-notation [f] for
the elements of LP, we shall follow the traditional practice and write f instead
of [f]. When we do this we must have in mind that the element f of L? (and
not the element f of LP) is not the single function f, but the whole collection
of functions each of which is equal to f a.e. on X.

For example:

1. when we write f; = fy for the elements fi, fo of LP, we mean the more
correct [f1] = [f2] or, equivalently, that fi; = f> a.e. on X,

2. when we write [ fgdu for the element f € LP, we mean the integral
f « Jgdu for the element-function f € LP and, at the same time, all integrals
Jx ['gdp (equal to each other) for all functions f” € L? such that f' = f a.e.
on X,

3. when we write || f]|,, for the element f € L”? we mean the more correct ||[f]|l,

or, equivalently, the expression (fX |fIP du)%, when 1 < p < +o00, and ess-
sup(f), when p = +o0, for the element-function f € £P and at the same time
all similar expressions (equal to each other) for all functions f’ € £ such that
f'=fae onX.

The inequality of Minkowski takes the form

11+ Fallp < 1Al + [ 21l

for every fi, fo € LP.
Holder’s inequality takes the form

1 gllx < [1f[lpllgllp
for every f € LP and g € L.

Theorem 11.7 All LP are Banach spaces.
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Proof: Let (fn) be a Cauchy sequence in LP. Then ||f, — fm|p — 0 and,
hence, [y |fn — fm|Pdp — 0, if 1 < p < 400, and ess-sup(fn — fm) — 0, if
p = +00. Theorem 11.6 implies that the sequence (f,,) in £P converges to some
f € LP in the p-mean. Therefore, [, |f, — fIPdp — 0, if 1 < p < +o0, and
ess-sup(fn, — f) — 0, if p = +o00. This means that ||f, — f|l, — 0 and (f,,)
converges to the element f of LP.

Definition 11.21 Let I be an index set and § be the counting measure on
(I,P(I)). We denote
P(I) = LP(1, P(I), ).

In particular, if I = N, we denote [P = [P(N).

If 1 < p < +o0, then, the function b = {b;};cr : I — F belongs to IP(I) if,
by definition, [, b’ df < +o0 or, equivalently,

Z |b;]P < +o0.
iel

If |b;| = 400 for at least one i € I, then ., [b;|P = +oc.

Definition 11.22 Let I be an index set andb: I — F. If 1 < p < 400, we say
that b = {b; }ic1 is p-summable if 3, |b;i|P < +o0.

Hence, b = {b; };ecs is p-summable if and only if it belongs to ?(I). We also

have
Ioll, = (D 1baf?) 7.

el

=

When 1 < p < 400, Minkowski’s inequality becomes

(S0 + 62y < (S pP) + (3 PPy

i€l el icl

for all b; = {bgl)}iel and by = {bz(?)}ie[ which are p-summable. Similarly, when
1< p,p’ < 400 and p,p’ are conjugate, Holder’s inequality becomes

A
7

Z |bic;| < (Z |bi|p)%(z |Cz'\p/) v

i€l el iel

for all p-summable b = {b;};c; and all p’-summable ¢ = {¢; }ier-

Since the only subset of I with zero f-measure is the (), we easily see that
b = {b; }icr is essentially bounded over I with respect to f if and only if there
is an M < +o0 so that |b;| < M for all ¢ € I. It is obvious that the smallest M
with the property that |b;| < M for all i € I is the My = sup;¢; |b;].

Definition 11.23 Let I be an index set andb: I — F. We say that b = {b; }icr
is bounded if sup,;c; |b;| < 400.
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Therefore, b is essentially bounded over I with respect to f or, equivalently,
b € 1>°(I) if and only if b is bounded. Also,

||6]lcc = ess-sup(b) = sup |b;].
i€l

The inequality of Minkowski takes the form

sup |b£1) + b52)| < sup |b§1)| + sup \bl(?)\
i€l iel i€l

for all b = {bgl)}iel and by = {bgz)}ig which are bounded. When p = 1 and
p' = +oo, Holder’s inequality takes the form

D lbicil <7 [bi] - sup e
iel

iel iel
for all summable b = {b;};cr and all bounded ¢ = {¢; }ier-

The spaces [P(I) are all Banach spaces.
As we have already mentioned, a particular case is when I = N. Then

+oo
lP:{x:(xl,xg,...)\Z|xk|p<+oo}, 1< p<+oo,
k=1

looz{x:(xl,xg,...)|sup|mk‘<+oo}’ p=+oo.
k>1

The corresponding norms are

+oo i
]l = (Z lzklP)7 1 <p< 400,
k=1
z]loo = sup |zx|,  p=+o0,
k>1

for every x = (x1,x0,...) € IP.

Another very special case is when I = {1,...,n}. In this case we have
IP(I) = F™. The norms are
n 1
lally = (D Jeal) ", 1<p < +oc,
k=1
lolloe = max |zif,  p= oo,
for every @ = (21,...,z,) € F™
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11.3 The dual of LP(X, X, ).

In this section p,p’ € [1,+00] are meant to be conjugate.

Theorem 11.8 Let g € L. If 1 < p < Ho0, then

lolly = sun{| | soan] 17 € 27071 < 1},

If u is semifinite, the same is true when p = 1.

Proof: (a) Let 1 < p < 400 and, hence, 1 < p’ < +00.
For any f € LP with ||f||, < 1, we have, by Hoélder’s inequality, that

| [x fadul < [[fllpllglly < llgllpr- Therefore,

sun{| [ saduis €701, < 1} < Lol

If |lgll,> = O, then the inequality between the sup and the ||g||,/, obviously,
becomes equality. Anyway, we have fX |g|pl dp = 0 and, hence, g = 0 a.e. on
X. This implies that fX fgdu =0 for every f € LP.

Now, let ||g||l,» > 0. We consider the function fy defined by

)P ~Ysign(g(z . . .
fol) = lo(=)] Hng,fl(g( ) if g(z) is finite and g(z) # 0,
0, ’ if g(x) is infinite or g(x) = 0.
Then,
o) it 0(2) is finit
fo(z)g(z) = lal®, ="’ if g(z) Is finite,
0, if g(x) is infinite
and, hence, [y fog dp = o= [ 19" dpu = llglly-

If 1 < p,p’ < +o0, then, since p(p/ — 1) =p/,

lg(@)”"
(fo(z)P =< llall?)
0, if g(x) is infinite

, if g(x) is finite,

D=

and, hence, [ foll, = ([x |fol?dn)? = 1.

If p = +o00,p’ =1, then

| folz)] = 1, if g(x) is finite and # 0,
’ 10, if g(x) is infinite or = 0

and, hence, || fo|lco = ess-sup(fo) = 1.
We conclude that

lolly = maax{| [ foduf1 s € 7. 151, <1},
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(b) Let p=1,p' = +o0.
For any f € L' with [[f[ly < 1, we have | [y fgdu| < [|f[1llgllos < llgllsc-
Therefore,

su{| [ sadn] 7€ 207 < 1} < gl

If |glloc = 0, then g = 0 a.e. on X. This implies that [ fgdu = 0 for
every f € LP and, thus, the inequality between the sup and the ||g||oo becomes
equality.

Let ||g]lcoc > 0. We consider an arbitrary € with 0 < € < ||g|lcc and, then
p{z € X||lglloc —€ < |9()] < |lglloc}) > 0. If p is semifinite, there exists a
B e X sothat BC {x € X||glloc —€ < |9(x)] < ||gllec} and 0 < p(B) < +o0.
We define the function fy by

fo(e) = TR it () i finite,
0, if g(x) is infinite.
Then,
o(wate) = { laellxs@) it gz s finite,
0, if g(z) is infinite

and, hence, [ fogdu = ﬁ Jglgldp > ||gllec — €.
Also,

o) = { xe) if g(x) is finite,
0, if g(z) is infinite

and, hence, || foll1 = [y |fol dp = ﬁ Jp dp=1.
These imply

sun{| [ soan] 17 € 2171 < 1} > gl — e

for every € with 0 < € < ||g||o and, taking the limit as ¢ — 0+, we conclude
that

loll =su{| [ foduf1s € 810 <1},

Definition 11.24 Let 1 < p < 400. For every g € ¥ we define ly : LP — F
by

lg(f)=/ngdu7 felLr.

Proposition 11.18 Let 1 < p < +o0o. For every g € Lp/, the function g of
Definition 11.24 belongs to (LP)*.

Moreover, if 1 < p < +oo, then ||l4l|« = |lgllpy and, if p =1, then ||l4]]« <
lglloc- If p=1 and p is semifinite, then ||yl = ||glco-
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Proof: We have I4(f1 + f2 = [x(fi + fo)gdp = [ frgdp + [y fagdp =
Lg(f1) +1g(f2). Also ly(kf) = [x(6f)gdu =k [ fgdu = Kly(f). These imply
that [, is a linear functlonal

Theorem 11.8 together with Proposition 11.5 imply that, if 1 < p < 400,
then [|ig]l« = |lgllpr- If p is semifinite, the same is true, also, for p = 1.

It p = 1, for every f € L' we have [L,(f)| = | [y fodu| < lglloollfI1-
Therefore, |1y« < ||9]oo-

Definition 11.25 Let 1 < p < +o0o. We define the mapping J : LV — (LP)*
by

for all g€ L¥ .

Proposition 11.19 The function J of Definition 11.25 is a bounded linear
transformation. If 1 < p < +oo, J is an isometry from LP into (LP)*. This is
true, also, when p =1, if u is semifinite.

Proof: For every f € LP we have lg,14,(f) = [ f(91 +92)dp = [y fo1dp+
fX f92 d,U/ = lgl (f) + lgz (f) = (lgl + llh)(f) and’ hencev J(gl + 92) = lgl+gz =
lg, +1lg, = J(g1) + J(92)

Moreover, l(f) = [y f(kg)dp = & [ fgdp = kly(f) = (klg)(f) and,
hence, J(kg) = l,{g =kly = rJ(9).

Now, [|J(g)|l« = lllgll« < |lgll» and J is bounded. That J is an isometry is

a consequence of Proposition 11.18.

Lemma 11.2 Letl € (LP(X, X, u)*. IfE€ X, S]E={A € X|ACE} is the
restriction of ¥ on E and p|E is the restricted measure on (E,X|E), we define
[1E by
1Bk =1(R),  he IP(E,S\E, uB),
where h is the extension of h as 0 on X \ E.
Then, l|E € (LP(E,X|E, p|E))* and |11 E||« < ||l||. Moreover,

I(fxe) = NE)SIE),  feLP(X,5p),
where f1E is the restriction of f on E.

Proof: For all h, h1, hy € LP(E,X]E, p] E) we consider the corresponding exten-
sions h hl, h2 € LP(X,%, p). Since h1 + h2 and kh are the extensions of hi+ ho
and kh, respectively, we have (I|E)(hy + hy) = I(hy + ha) = (k1) + l(ha) =
(11E)(h1) + (11E)(hs) and (I1E)(kh) = I(kh) = kl(h) = k(1] E)(h). This proves
that [1E is linear and |(I1E)(h)| = |I(h)| < ||l||*||i~1|\p = [[{||«||h]|, proves that
[1E is bounded and that ||[I]E||. < ||{]]«.

It f € LP(X, X%, ), then f/TE’ = fxg on X and, hence, ([|E)(f1E) =
WS1E) = U(fxe)-
Definition 11.26 The l|E defined in Lemma 11.2 is called the restriction
of l € (LP(X,X,n))* on LP(E,X|E,u|E).
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Theorem 11.9 Let 1 < p < +00.
(i) For every l € (LP)* there exists a unique g € LP so that

I(f) = /X fgdu

for every f € LP.
(ii) The function J of Definition 11.25 is an isometry from LP onto (LP)*.
If 1 is o-finite, then (i) and (ii) are true also when p = 1.

Proof: A. We consider first the case when p is a finite measure: p(X) < 4o0.
Let [ € (L?)* and 1 < p < 4o0.
Since [, [xal?dp = p(A) < +oo, we have that x4 € L? for every A € X.
We define the function v : ¥ — F by

v(A) =1(xa), Ac¥.

We have v(0) = I(xp) = (o) = 0. If A1, Ag,... € 3 are pairwise disjoint
and A = U;r:‘Xl’Aj, then ya = ;r:o(l) x4,;- Therefore, || 2?21 xa; — xalb =

fX | Zj:oth XA, |p du = fX ‘XU;’:"’fLHAj ‘p dp = u(Uf2+1Aj) - M((Z)) =0, by the
continuity of y from above. The linearity and the continuity of [ imply, now, that
S v(Ay) = 30 Uxa,) = 10271 xa;) — l(xa) = v(A) or, equivalently,
that Y7 v(4;) = v(A).

Hence, v is a real or complex measure (depending on whether FF = R or
F=C)on (X,X).

We observe that, if A € ¥ has p(A) = 0, then v(A) = I(xa) = l(o) = 0,
because the function y 4 is the zero element o of LP. Therefore, v < 1 and, by
Theorems 10.12 and 10.13, there exists a function g : X — F which is integrable
over X with respect to u, so that

l(XA)=V(A)=/Agdu=/XXAQdu

for every A € X. By the linearity of [ and of the integral, this, clearly, implies

l(¢) = /X bg du

for every measurable simple function ¢ on X.

This extends to all measurable functions which are bounded on X. Indeed,
let f € LP be such that | f| < M on X for some M < +oo. We take any sequence
(¢n) of measurable simple functions with ¢,, — f and |¢,| T |f| on X. Then,
¢ng — fgand |png| < |fg| < M|g|on X. Since [, |g|du < +o0, the Dominated
Convergence Theorem implies that [ ¢ngdp — [y fgdu. On the other hand,
|¢r,— fI? — 0on X and |¢,, — fI? < (|¢n|+|f])P < 2P| f|” on X. The Dominated
Convergence Theorem, again, implies that fX |pn— fIP dp — 0 as n — 400 and,
hence, ¢, — f in LP. By the continuity of I, we get [ ¢ngdu = U(d,) — I(f)
and, hence,

o l(f)=/ngdu
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for every f € LP which is bounded on X.

Our first task, now, is to prove that g € L.

If 1 < p,p’ < 400, we consider a sequence (¢,,) of measurable non-negative
simple functions on X so that ¢, 1 |g|” ~! on X. We define

_ ) (x)sign(g(z)), if g(z) is finite
9nl@) = {07 if g(x) is infinite.

Then, 0 < ¢ng = Yulg| 1 |g|p/ a.e. on X and each ¢, is bounded on X.

Hence, H%Hﬁ = fX Yhdp < fX Yulgldp = fX Pngdp = l(dn) < HZH*||¢nHP <
]| <][tbn]|p, Where the last equality is justified by o. This implies [y ¥ du =

lnllh < HleZ/ and, by the Monotone Convergence Theorem, we get [ P dp =
limy,— oo [y Y5 dp < |[I||% . Therefore, g € L” and

gllp < [121]-

If p=1and p’ = 400, we consider any possible ¢ > 0 such that the set
A={ze X|t<|g(x)|} has u(A) > 0. We define the function

sy = (D L e

Then t(4) < [, lgldin = [y Fgdi = 1(F) < U071 < Nlou(A), where the
last equality is justified by ¢. This implies that ¢ < ||I||. and, hence, |g| < ||I||«
a.e. on X. Therefore, g is essentially bounded on X with respect to p and

19lloo < [12]]-

We have proved that, in all cases, g € L” and ||g|l,r < [|I]|.-

Now, consider an arbitrary f € LP and take a sequence (¢,) of measurable
simple functions on X so that ¢, — f and |¢,| T |f| on X. We have already
shown, by the Dominated Convergence Theorem, that ¢, — f in LP and,
hence, (¢n) — I(f). Moreover, | [ dngdp — [ fgdu| < [ |pn — fllgldp <
||}<1bn — fllpllgllyy — 0, since ||gl,r < +o00. From i(¢,) = [y ¢ngdu, we conclude
that

1) = [ sadn.  sern
b's
This implies, of course, that [(f) = l4(f) for every f € L? and, hence,
l=1y=1J(g).

Therefore, J is an isometry from L onto (LP)*.

Now let ¢ € L*" also satisfies [ = I,,. Then J(g') =1 = J(g) and, since .J is
an isometry (and, hence, one-to-one) we get that ¢ = g a.e. on X.
B. We suppose, now, that p is o-finite and consider an increasing sequence (E})
in ¥ so that Ey 1 X and u(Ex) < +oo for all k.

Let I € (LP(X, X, w))*.
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For each k, we consider the restriction [|Ey of | on LP(FEy,X]|Ey, u]Er),
which is defined in Lemma 11.2. Since l[|Ey € (LP(Ek,X]|Eg, 1] Ex))* and
I Ekll« < |ll]l+« and since (u]Eg)(Ex) = p(Ex) < +oo, part A implies that
there is a unique gy € LP (Ey, X Ey, 1] Ex) so that |lgrlly < [[11Ekll« < ||«
and

(I Ex)(h) = : hgk d(p] Ex)

for every h € LP(FEy, X Ey, ;] Ex). In particular,

l(fxe) = (BB = [ (7B d(uEv)
Ej
for every f € LP(X, X, p).
For h € LP(E}), X Ex, 1] B, take its extension b’ on Fj1 as 0 on Ej41\ Ek.
Since h = b/ on X, we get

hgr d(1) Ey,) = (11Ex)(h) = I(h) = L(I') = (1] Eps1) ()

Ey

:/E R gria d(/ﬂEkH):/Xh/fg;rld/‘
_ [E (Wgr1)] Ex (1 E)
_ /E h(gia ] Ex) () Ey).

By the uniqueness result of part A, we have that gg+1|Fr = gr a.e. on Ej.
We may clearly suppose that gg+1]Er = gr on Ej for every k, by inductively
changing gr+1 on a subset of Fj, of zero measure.

Define the measurable function g on X as equal to g on each Ej. lLe.

g1 Ex = gr on Ey, for every k. Therefore, I(fxE,) = fEk (f1Ek) (g Ex) d(1] Ex)
and, thus,

l(fXEk)Z/E fgdu, feLP(X, %, u).

If 1 < p’ < 400, then, since |gx| T |g| on X, by the Monotone Convergence
Theorem, [y |97 dpp = limy— yoo [ [Gk[7 dpp = limp—yoo [ sl d(p]Er) <
lim supy,_, 4 o ||HEk||§3/ < ||l||§fl < 400. Hence, g € L (X,%,u) and ||g, <

U| -

3 = oo, we have that, or every % Il = bl < ll < 101551 < 1.
a.e. on Ej. This implies that |g| < ||I||« a.e. on X and, thus, g € L>®(X, X, u)
and [|glloc < [|1]]-- ,

Hence, in all cases, g € LP (X, %, 1) and ||g||,r < ||{]]+-

For an arbitrary f € LP(X, ¥, u), we have || fxz, — |} = [ [fxz,—fIP du =
sz |fIPdp = [y xEe|fIP du — 0, by the Dominated Convergence Theorem. By

the continuity of I, we get I(f) = limg— 00 I(fXE,) = limg_ 400 fEk fgdu =
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Jx fgdu. The last equality holds since |fEk fodp— [y fgdu| = \ng fgdu| <
1
(fEi |7 dp) 7 |lgll,r — 0. We have proved that

Kf)=]ifQWA feIP(X, 5, )

and, hence, [ = [; = J(g). Therefore, just as in part A, J is an isometry from
L (X, %, 1) onto (LP(X, 3, pu))*.

Again, if ¢’ € L¥ (X, ¥, 1) also satisfies [ = lg, then J(¢') =1 = J(g) and,
since J is an isometry, we get that ¢’ = g a.e. on X.

C. Now, let 1 < p,p’ < +00 and pu be arbitrary.

Let | € (LP(X, X, w))*.

We consider any E € ¥ of o-finite measure and the restriction {]E of | on
LP(E,X|E, u]|E), defined in Lemma 11.2. Since [1E € (LP(E,X|E, u|E))* and
I11E||+ < ||I]|+, part B implies that there is a unique gp € L? (E,X]E, u] E) so
that [|gsll, < [I1E[|. < I+ and

mmw:/@mmm

E
for every h € LP(E,¥]E, u|E). In particular,

wmmzmmmmzéyWMMmm

for every f € LP(X, X, p).

Now, let E, F be two sets of o-finite measure with £ C F. Repeating the
argument in the proof of part B, with which we showed that gxi1]Er = gk
a.e. on Ej, we may easily show (just replace Ey by F and Ej41 by F) that
gr|E = gg a.e. on E.

We define

M = sup {/ lge|P d(u]E) | E of o-finite measure}
E

and, obviously, M < |[I||Y’ < +oco. We take a sequence (E,) in 3, where each E,,
has o-finite measure, so that [, |gg, [P d(u]E,) — M. We define E = U/ E,

and observe that E has o-finite measure and, hence, [, lge|? d(u]E) < M.
Since E,, C E, by the result of the previous paragraph, gg|E, = gg, a.e. on
E, and, thus, [, g5, P d(1]Ey) < [4|95[P d(u]E) < M. Taking the limit as
n — 400, this implies that

[ losl?" a1 By = 1.
E

We set g = g and have that
[ ot du= [ lgel duE) = <y
X E
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Now consider an arbitrary f € LP(X, X, u). The set
F=FEU{zeX|f(z)#0}

has o-finite measure. By gr|E = gp a.e. on E, we get M = [, lgel? d(u)E) =
Jelgel? d(ulF) <[5 lge” d(plF) + [p g lorl” dulF) = [plgrlP d(u]F) <
M. Therefore, [}, lgr|?" d(] F) = 0 and, hence, gr = 0 a.e. on F'\ E. Now,

I(f) = U(fxr) = /F (F1F)gr d(u] F) = /E (f1F)gr d(u] F)

Thus, | = l; = J(g) and, just as in parts A and B, J is an isometry from
LP(X, %, p) onto (LP(X, X, u))*.

Finally, if ¢ € L (X, %, u) also satisfies [ = I/, then J(g') = [ = J(g) and,
since J is an isometry, we get that ¢’ = g a.e. on X.

11.4 The space M(X,Y).

Just as in the previous two sections, (X, X) will be a fixed measure space.

Definition 11.27 Let (X,Y) be a measurable space. The set of all real or
complex (depending on whether F = R or F = C) measures on (X,X) is
denoted by M (X,3).

If there is no danger of confusion, we shall use the symbol M instead of
M(X,%).

We recall addition and multiplication on these spaces. If v1,v5 € M, we
define vy +v5 € M by (v1 + 12)(A) = v1(A) + 12(A) for all A € 3. We, also,
define kv € M by (kv)(A) = kv(A) for all A€ X and k € F.

It is easy to show that M is a linear space over F. The zero element is the
measure o defined by o(A) = 0 for all A € ¥.. The opposite to v is —v defined
by (—v)(A) = —v(A) for all A € X.

Definition 11.28 For every v € M we define
]l = [v[(X).
Thus, ||| is just the total variation of v.
Proposition 11.20 || - || is a norm on M.

Proof: Proposition 10.9 implies that |[v1 + va|| = |11 + 1.|(X) < |v|(X) +
92l(X) = [l + [} and. ] = ] (X) = [l [w](X) = |l ]

If ||¥|| = 0, then |v|(X) = 0. This implies that |v(A)| < |v|(4) = 0 for all
A € ¥ and, hence, v = o0 is the zero measure.
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Theorem 11.10 M is a Banach space.

Proof: Let (v,) be a Cauchy sequence in M. This means |v, — v,|(X) =
lvn — vm|l — 0 as n,m — 400 and, hence, [V, (A) — Vi (A)] = [(Vn — vm ) (A)] <
[V — vm|(A) < |t — vp|(X) — 0 as n,m — 4oo. This implies that the
sequence (v, (A)) of numbers is a Cauchy sequence for every A € X. Therefore,
it converges to a finite number and we define
v(A)= lim v,(A)
n—-+4oo

for all A € X.

It is clear that v(0) = limy,— 400 v, (0) = 0.

Now, let Ay, As,... € ¥ be pairwise disjoint and A = U;“:o‘fAj. We take an
arbitrary € > 0 and find N so that |v, — vm|| < € for all n,m > N. Since
E;r:(xf lun|(4;) = |vn|(A) < +o0, there is some J so that

+oo

> vwl(4y) <e

j=J+1

From |v,| < |V, — vn| + |vn| we get that, for every n > N,

“+oo +oo “+o0
Do wal(A) < D7 e —wnl(4) + D Iewl(4y)
j=J+1 j=J+1 j=J+1
< v — on|(Uf254145) +e
Slvn—wnl(X) +e = |lvn —vnll +e
< 2e.

This implies that, for arbitrary K > J + 1 and every n > N, we have

K vn(A;)| < K vn|(A4;) < 2¢ and, taking the limit as n — +o0,
j=J+1 J j=J+1 J

E;;Hl |v(A;)| < 2e. Finally, taking the limit as K — +o0, we find

+oo
S (A, < 2
j=J+1
J o] oo
We have 1 (A) — 3271 va(A))] = [ 2277540 va(A)] < 357254 va(45)] <
;rg}ﬂ |Un|(A;) < 2€ for all n > N and, taking the limit as n — +o0,

j=1
Altogether, we have
“+o00o J “+oc0
W(A) =D w(A) < (A) =Y v(A)l+ D [v(4))] < 4e
Jj=1 Jj=1 j=J+1



Since € is arbitrary, we get v(A) = Z;r:o‘l} v(A;) and we conclude that v € M.

Consider an arbitrary measurable partition {A;,...,A,} of X. We have
that >0, [(vn — i) (Ak)| < [[Vn — V|| < € for every n,m > N. Taking the
limit as m — 400, we find > ¥ _, |(vn, —v)(Ay)| < € for every n > N and, taking
the supremum of the left side, we get

1 = vl = [ = ](X) < e.

This means that ||v, —v| — 0 as n — +o0.

11.5 The space Cy(X) and its dual.

Definition 11.29 Let X be any non-empty set and B(X) be the space of all
bounded functions f: X — F.

If there is no danger of confusion we shall use the notation B for B(X).

The sum of two bounded functions and the product of a bounded function
with a number are bounded functions. Therefore, the space B is a linear space
over F.

Definition 11.30 We define
[fllu = sup | f(z)]
zeX

for every f € B.

It is easy to see that || - ||,, is a norm on B. In fact, ||ol|, = sup,cx 0=0. If
| |l = 0, then sup, ¢ x | f(z)] = 0 and, hence, f(z) = 0 for all z € X. Moreover,
16 £l = sup,ex |5 ()] = |kl sup,ex |f(2)] = |Kl[| f]lu- Finally, [f(x) +g(z)| <
[f @)+ |g()] < [[fllu+llgllu for all z € X and, hence, |[f +gllu < [[fllu + llg]lu-

We call || - ||, the uniform norm on B.

Theorem 11.11 B is a Banach space.

Proof: Let (f,) be a Cauchy sequence in B. Then, for any z € X we have
|fn(@) = fn(@)] < || fn — finlle — 0 as m,n — +oo. This means that (f,(x)) is
a Cauchy sequence in F' and, therefore, it converges. We denote

f@)= lm_fule)
and, in this way, a function f : X — F' is defined.

For e = 1, there is some N so that ||f, — fm|lw < 1 for all n,m > N. In
particular, || f, — fa ||« < 1for all n > N which implies that | f,,(z) — fn(z)] <1
for all z € X and n > N. Letting n — o0, we find |f(z) — fn(x)] <1 and,
hence, |f(z)| < |fn(z)|+1 <||fn]lu+1 < +oo for all z € X. Therefore, f € B.

Now, for any € > 0, there is some N so that || f,, — finllu < € for all n,m > N.
This implies | fy, (z) — fm (z)] < e for all z € X and n,m > N. Letting m — +oo,
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we find |f,(z) — f(z)| < e for all x € X and n > N. Therefore, ||fn, — fllu <€
for all n > N and (f,) converges to f in B.

From now on we shall assume that X is a topological space. This is natural,
since our main objects of consideration will be continuous functions and Borel
measures on X.

Definition 11.31 The space C(X) consists of all continuous functions f : X —
F.

We write C' instead of C(X) if there is no danger of confusion

Since the sum of two continuous functions and the product of a continuous
function with a number are continuous functions, the space C is a linear space
over F.

Definition 11.32 BC(X) = B(X) N C(X).

We may, again, write BC for BC(X).
BC is also a linear space and, as a subspace of B, we may (and do) use as
norm the restriction of || - ||, on it. In other words, we write

£l = sup [ f(2)]
zeX

for every f € BC.
Theorem 11.12 BC is a Banach space.

Proof: 1t is enough to prove that BC' is a closed subset of B.

Let (f,) in BC converge to some f in B. Take any z € X and any € > 0.
Then there is some N so that | f, — f|l. < § for all n > N and, in particular,
Ifx = fll« < §. By continuity of fy, there is some open neighborhood U
of z so that [fx(2') — fn(z)] < § for all 2’ € U. Now, for all 2’ € U we
have [£(2) — £(2)] < |[F(') = fw ()| + |fn (o) — fw(o)] + | fx) — F@)] <
If — fnllu +§ + If5 — fllu < €. Therefore f is continuous at x and, since x is
arbitrary, f is continuous on X. Thus f € BC.

We know that, if X is compact, then every continuous function f: X — F
is also bounded on X. Therefore, if X is compact, then C' = BC.

Lemma 11.3 Let pu be a real or complex (depending on whether F = R or
F = C) Borel measure on X. For every f € BC we have

‘/de“) = /X Ll < [1F Ll

Proof: A consequence of Theorem 10.8.
Let p be a Borel measure on X. We recall that u is called regular if for

every Borel set E we have (i) u(F) = inf{u(U)|Uopen 2 E} and (ii) pu(F) =
sup{u(K)|Kcompact C E}.
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Definition 11.33 If i is a real Borel measure on X, then p is called regular if
ut and p~ are reqular.

If p is a complex Borel measure on X, then p is called regular if ®(p) and S(p)
are regular.

The space of all reqular real or complex measures on X is denoted by

We write Mg instead of Mg (X, Bx) if there is no danger of confusion.

It is clear that, if u is a Borel measure and p(FE) < +o00, then (i) and (ii) in
the definition of regularity are equivalent to the following: for every € > 0 there
is an open U D E and a compact K C E so that u(U \ K) < e.

Proposition 11.21 Let p be a real or complexr Borel measure on X. Then u
is regular if and only if || is regular.

Proof: Let u be real. If p is regular, then pu+ and p~ are regular and, thus,
for every Borel set £ and ¢ > 0 there are open UT,U~ D E and compact
Kt K~ C E so that pm(UT \ KT) < eand p (U~ \ K7) < e. We set
K=KrUK CAand U =U"NU" 2 A and then " (U \ K) < € and
p~ (U\K) <e. Weadd and find |p|(U \ K) < 2¢ and, hence, |u| is regular.

Now let |u| be regular. Then for every Borel set E and € > 0 there is an
open U D E and a compact K C E with |u[(U\ K) < € and, since pu, u= < |pul,
we get the same inequalities for u* and p~. Therefore, ™ and p~ are regular
and so p is regular.

If 11 is complex, the proof is similar and uses the inequalities |R(u)], |S(p)| <
|l and [p] < [R(p)| + 1S (p)]-

Theorem 11.13 My is a closed linear subspace of M and, hence, a Banach
space.

Proof: If py and po are regular Borel measures on X, then |u;| and |us| are
regular. Therefore, for every Borel set E' and € > 0 there are open Uy,Us O F
and compact K1, Ky C E so that |p1|(Ur \ K1) < € and |p2|(U2 \ K2) < e
Weset K = KiUKy; C Fand U = U; NU; O E, and thus we find the same
inequalities for K and O. We add, using |p1 + po| < |p1| + 2], and we find
|p1 + p2|(U\ K) < 2e. Hence, |p1 + u2l is regular and so pq + pe is regular.

It is even simpler to prove that, if y is regular and k € F', then xu is regular.

Therefore My is a linear subspace of M.

Now, let () be a sequence in My converging to u in M. We consider any
Borel set E and € > 0 and find N so that ||uy — p|| < € and then, since |py| is
regular, we find an open U D E and a compact K C E so that |un|(U\ K) < e.
Then |u|(U\ K) < |un|(U\ K) + ||un — p|| < 2¢ and, thus, u is regular. This
means that Mz is closed in M.

We recall Theorem 5.7 which says that, if for every open subset O of X there
is an increasing sequence of compact sets whose interiors cover O, then every
locally finite Borel measure is regular and, hence, Mr = M.
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Definition 11.34 A topological space X is called locally compact if for every
x € X there is an open V C X such that x € V and V' is compact.

Lemma 11.4 Let X be locally compact Hausdorff. If K C X is compact and
U gz( is open and K C U, then there is an open V such that K CV CV CU
and V' is compact.

The next result is a special case of a well-known more general Lemma of
Urysohn.

Theorem 11.14 Urysohn’s lemma. Let X be locally compact Hausdorff. If
K C X is compact and U C X is open and K C U, then there is a continuous
f:X —0,1] so that f =1 on K and supp(f) is a compact subset of U.

Proof: Let G = X \ L and denote Ag = K and By = G. Ay is closed and Bj is
open.
Then there is some open B% such that

AOQB% QB% C B;.
Similarly, there exist open B 1 and B 3 50 that
By CB1 CB1CByCBiCB:sCB:sCB.
4 4 2 2 4 4

Continuing inductively, to every rational of the form r = 2& with 0 < k£ < 27
corresponds an open set B,., with the property

AOgBrgEng

for every two such rationals 7, s with r < s. Let Qg be the set of all these
rational numbers.

We define f(z) =inf{r € Qqlz € B,} if v € By and f(z) =1ifz € X\ B;.

We see that f = 0 on K and f = 1 on L and that f : X — [0,1] and it
remains to prove that f is continuous on X.

Let z € X and ¢ > 0. If 0 < f(z) < 1, there are r,7’,s € Qg so that
fl@)—e<r<r < flz)<s< f(x)+e Ifye B, then f(y) <s< f(x)+e If
y € X\ B, then y ¢ B,, hence f(y) >r > f(z) —e. Also, x € Bs and = ¢ B,
therefore x € X \ B,. Thus, the open set V = B, N (X \ B,) contains 2 and
f(x) —e< f(y) < f(x) + € for every y € V. Therefore, f is continuous at x.

If f(z) =1, we take, like before, 7,7 € Qg so that 1 —e < r <7’ < 1 and
we see that the open set V = X \ B, contains r and 1 —e < f(y) <1< 1+e¢
for every y € V. Similarly, if f(z) = 0, we take s € Q4 so that 0 < s < € and
we get that the open set V = B, contains 2 and —e < 0 < f(y) < € for every
y € V. Hence, in all cases f is continuous at x.

We have to say that Urysohn’s Lemma holds, more generally, for the normal
topological spaces, that is for Hausdorff topological spaces with the property
that for any two disjoint closed subsets there exist two disjoint open subsets
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which contain them. This is the only property that was used in the proof
of the Lemma. A class of normal spaces is, as we have seen, the compact
Hausdorff spaces and another one is the metric spaces. Indeed, in the case of
a metric space (X, d) the Lemma has a simple proof: we consider the function

flz) = % for all + € X, where d(z,A) = infycad(z,y) for any
ACX.

Lemma 11.5 (Partition of unity.) Let X be locally compact Hausdorff. If
K C X is compact and Uq,...,U, C X are open so that K C Uy U---UU,,
then there exist fi,..., fn : X — [0,1] continuous on X so that supp(f;) is a
compact subset of U; for all j and fi +---+ fn, =1 on K.

Proof: From the hypothesis, K \ (Uz U ---UU,) C U; so there is an open V;
so that K\ (UsU---UU,) CV; CV; CU;. Then K CViUUsU---UU,
and, hence, K\ (Vi UUsU---UU,) C Us. So there is an open V5 so that
K\(ViuUsU---UU,) C Vo CVy CUy. Then K C ViUV UUsU---UU,.
Continuing inductively, we replace one after the other the Uy, ..., U, with open
Vi,...,Vysothat K CViU---UV, andWQ U; for all j.

We repeat the process, so there exist open Wy,..., W, so that K C W; U
U W, andeQVj QVjQUj for all j.

By Urysohn’s Lemma, there are g1, ..., g, : X — [0,1] so that g; = 1 on W;
and g; = 0 out of V}. Also, there exists gy : X — [0,1] so that go = 0 on K and
go=1loutof Wi U---UW,. We define f; = m forevery j=1,...,n.

If for any x € X the go(z) = 1 is not true, then x € W7 U---UW,, and then
gj(z) =1 for some j = 1,...,n. Therefore, go + g1 +---+ ¢, > 1 on X, and
the f1,..., fn : X —[0,1] are continuous on X.

If x ¢ V;, then g;(z) = 0 and thus f;(x) = 0. So supp(f;) C V; C U;. Also,

_ _gitoden _
f1+~~+fnfm710nK,becauseg0700nK.

Definition 11.35 Let K be compact and Uy, ...,U, be open subsets of the lo-
cally compact X and K C UyU---UU,,. Ifthe f1,..., fn: X — [0,1] are continu-
ous on X so that supp(f;) is a compact subset of U; for all j and fi+---+f, =1
on K, then the collection {f1,..., fn} is called a partition of unity for K
relative to its open cover {Uy,...,U,}.

Definition 11.36 Let f € C(X). We say that f vanishes at infinity if for
every € > 0 there is a compact K C X so that |f| < € outside K.
We define

Co(X) ={f € C(X)| f vanishes at infinity }.

Again, we may simplify to Cjy.
It is clear that
Cy C BC

and, in fact, that Cj is a linear subspace of BC'. We also take the restriction on
Cy of the uniform norm on BC, that is

[fllu = sup [f(z)]
zeX
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for all f € Cy.
If X is compact, then Cy = C' = BC.

Theorem 11.15 Cy is a Banach space.

Theorem 11.16 Let X be locally compact Hausdorff and € M. Then

Il =su{| [ sau] 17 € Conlrl <1},

Proof: For all f € C(X) with ||f|, <1, Lemma 11.4 implies that | [, fdu| <
1 el < Jje]]. Therefore,

sun{| [ fau|1 1€ C0 <1} <l

By the definition of | ||, there are pairwise disjoint Borel sets A1, ..., A, C
X so that ||u|| — € < |u(A1)] + -+ + |pu(A4y)]. Since p is regular, for every j
there is a compact K; C A; so that [u|(4; \ K;) < +e. Therefore, [|u] — 2¢ <
(K1) + -+ + |u(Ky)|. Since Ky, ..., K, are pairwise disjoint, it is easy to
prove that there are pairwise disjoint open Uy, ..., U, so that K; C U; for all j
and, taking them smaller if we need to, |u|(U; \ K;) < %€ for all j. Then, for
all j there are f; : X — [0, 1] continuous on X so that f; =1 on Kj and f; =0

out of U;. Finally, we define x; = sign( [, fjdu) and f = rifi+ -+ knfo.
It is easy to see that || ]|, < 1. Therefore,

‘/delu"J;Hj/ujfjdu’j;’/ljjfjd“’
> 57 ()| — g | /U].\Kj £, o]

Jj=1

>l = 2¢ = D ul(U; \ K5) > |l = 3e.

Jj=1

Since € > 0 is arbitrary, we conclude that

sun{| [ 7du]1 £ € COONT <1} > il

Definition 11.37 Let X be locally compact Hausdorff. For every p € Mgr we
define l, : Co — F by

W= [ tan rec
X
Proposition 11.22 Let X be locally compact Hausdorff. For every p € Mg,

the function l,, of Definition 11.35 belongs to (Cp)*.
Moreover, ||1,]|« = ||u]]-

254



Proof: We have L,(f1 + f2) = [ (fi+ fo)du = [ fidu+ [ fadp = 1.(f1) +
Lu(f2). Also, ly(kf) = [y (kf)dp =k [ fdu = kl,(f). These imply that [, is
a linear functional.

Theorem 11.15 together with Proposition 11.5 imply that |||« = ||z

Definition 11.38 Let X be locally compact Hausdorff. We define the mapping
J: Mg — (Co)* by

for all p e Mg.

Proposition 11.23 The function J of Definition 11.36 is an isometry from
M'R nto (Co)*

Proof: For every f € C(X) we have l,,, 1, (f) = fod(ul + ug) = fX fduy +
fX fdus = lm(f) + s (f) = (l/tl + luz)(f) and, hence, J(p1 + p2) = by s =
lltl + l,u2 = J(lu‘l) + J(N’Q)

Moreover, L, (f) = [y fd(kp) = & [ fdp = &l,(f) = (kl,)(f) and, hence,
J(kp) = ly = Kl = &J ().

Now, [|J(p)|l« = [[lull« < ||g]| and J is an isometry.

Theorem 11.17 (F. Riesz, Radon, Banach, Kakutani.) Let X be locally com-
pact Hausdorff.

(i) For every l € (Co)* there exists a unique regular (real or complex) Borel
measure p on X so that

= [ s

for every f € Cy.

If l is non-negative (in other words if I(f) > 0 for every non-negative f € Cy),
then p is non-negative.

If 1 is real (in other words I(f) € R for every real f € Cy), then p is real.

(ii) The function J of Definition 11.36 is an isometry from Mz onto (Cp)*.

Proof: (A) Let I € C'(X)* be non-negative.

For each open O C X and f € C(X) we denote f < O whenever f : X —
[0,1] and supp(f) C O.

For each open O we define

1(0) = sup{i(f)[ f < O}
and, then, for each F C X we define
p*(E) =inf{u(0) | O open D E}.
If O,0" are open and O C O’, then f < O implies f < O’ and, thus,
p#(0) < u(0'). Hence, u*(0) = p(0) for each open O.

It f <0, then I(f) < [[Zll«/[fllu < [[Z]l«. Hence, p(O) < [|If[« and p*(E) <
IlZ||.« for every E C X.
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It is obvious that p*(0)) = w(@) = 0 and also that p*(E) < p*(E') for all
E,E’ with E C E'. Let now E = E; UFE,U---. For each j we take an open
O; 2 Ej so that u(O;) < p*(Ej)+ 57 and set O = O1UO2U---. Let f < O, and
then set K = supp(f) C O. There is, then, N so that K C O; U---U Oy and
we consider a partition of unity {f1,..., fn} for K relative to {O1,...,0On}.
Then f = ffi+---+ ffn and supp(ff;) < O; for each j and, hence, I(f) =
WfF) + o+ W) S p(Oy) + - + p(On) < pu(Oy) + p(Ox) + -, This
implies that u(O) < u(O1) +u(On) 4+ < pw*(E1) + p*(E2) +- - -+ € and, since
E C O, we get u*(E) < pu*(Ey) + p*(E2) + -+ - + €. Since € > 0 is arbitrary, we
get p*(E) < p*(Eq) + p*(E2) + ---. We conclude that p* is an outer measure
on X.

By the Caratheodory process, we define the o-algebra of y*-measurable sub-
sets of X on which the restriction of p* is a measure.

Consider any open O and any E. We take an open O’ O E with u(0') <
p*(E) +eand f < O’ NO so that I(f) > u(O' N O) —e. The O\ supp(f)
is open and we take g < O" \ supp(f) so that I(g) > u(O’\ supp(f)) —e. We
observe that f + g < O', whence p*(E) + ¢ > u(0') > I(f +g) = 1(f) +1(g) >
w(O' N O) + p(O"\ supp(f)) — 2¢ > p*(ENO)+ p*(E\ O) — 2. Hence,
p*(E) > p*(ENO) 4+ p*(E \ O) and this means that O is p*-measurable.
Therefore, the o-algebra of p*-measurable sets contains all open sets and, thus,
includes Bx. We define u to be the restriction of u* on Bx. So p is a non-
negative Borel measure on X. Observe that pu is identical to the already defined
1 on the open sets, since we proved that p*(O) = u(O) for each open O.

We shall now prove that

(#) p(K) = inf{l(f)[ f € C(X)and xx < f on X}

for all compact K C X.

We take any f € C(X) with f > xx (e.g. f > 0on X and, in particular,
f > 1 on K) and consider the open set O = {z € X|f(z) >1—¢€¢} D K. If
g < O, then g < %_6 f on X and then I(g) < 1; I(f), since [ is non-negative.
Therefore, 11(O) < 1 I(f), whence p(K) < $2-1(f). Since € > 0 is arbitrary,
this implies that p(K) < I(f) and, thus, u(K) < inf{l(f)|f € C(X)and xx <
fon X}. We now take an open O O K with u(O) < u(K) + € and, then, an
f+ X — [0,1] continuous on X with f = 1 on K and supp(f) € O. Then
f > xx and f < O and, hence, I(f) < u(O) < u(K) + €. Since € is arbitrary,
inf{l(f)]| f € C(X)and xx < f on X} < u(K).

We shall next prove the regularity of pu.

For each Borel set E we have p(E) = p*(E) = inf{u(O)|O open DO E}
and this is the first regularity condition. We take any Borel set F and find
an open O D FE so that u(O) < uw(E) + e We then find ¢ < O so that
I(g) > n(0O) — € and set K = supp(g) C O. For each f € C(X) with f > xk,
we get that f > ¢ and then I(f) > I(g). From (4) it is implied that u(K) >
[(g). Therefore, we have a compact K C O with p(K) > pu(O) — €. Since
w(O\ E) = u(0O) — u(E) < e, there is an open O’ D O\ E so that u(0’) < 2e.
We now define L = K'\ O’ and observe that L is a compact subset of E and that

a
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E\NLC(O\K)UO'. Thus, u(E) — (L) < u(O\ K) + pu(0") < 3¢ and, hence,
pu(E) = sup{p(L)|L compact C E}. This is the second regularity condition.
Finally, we shall prove that I(f) = [, fdu for every f € C(X) and, by
linearity, it is enough to prove it for real f. (Of course, if F' = R, then all
functions are real anyway.) If f is real, we write f© = 1(|f| + f) > 0 and
= %(\f| — f) >0, whence f = f* — f~. Therefore, it is enough to consider
f > 0 and, multiplying with an appropriate positive constant, we may assume
that f € C(X)and 0 < f <1 on X.
We take arbitrary N and define Kj, = {z € X| f(z) > %} for 0 < k< N.
Every K} is compact and, obviously, Ko = X. Also, for each j =0,...,N —1

we define . . .
b {1514

Each f; is continuous on X and

1 1
N XK <fj < N XK
for each j =0,...,N — 1 and also

f=fo+ i+t + [ noa
Adding the last inequalities and integrating, we find
1 1
N+ () £ [ Fp < (o) - (o))
X

From xg,,, < Nf; and (f) it is implied that u(K;41) < I(Nf;) = NI(f;).
From Nf; < xg; it is implied that Nf; < O and, thus, NI(f;) < u(O) for
every open O D K. Hence, from the definition of u(K;) = u*(K;), we get that
NIU(f;) < p(K;5). Therefore

(K1) <U(f;) <

2=

and, adding,

1

D) 4 plE) < US) <

Thus, | [ fdp = 1(f)] < 5 (u(Eo) + - + p(Kn-1)) — § (K1) + - +
W(KnN)) = N,u(Ko \ Kn) < %M(X) and, since N is arbitrary,

n=[ rau

and the case of non-negative [ is finished.
(B) Let now [ be real. For each non-negative f € C(X) we define

I17(f) =sup{l(g)|g € C(X),0< g < f on X}.

257



Obviously, IT(f) > 1(0) = 0 and IT(f) > I(f). Also, if 0 < g < f, then
L)l < [l2llllgllu < N2l flla and, thus, IF(f) = [IF(F)] < (2] fllu < +oo.

For every k > 0 and non-negative f € C(X) we have [T (kf) = sup{l(g) | g €
C(X),0 < g < kfonX} = sup{l(kh)|h € C(X),0 < h < fonX} =
rsup{l(h)|h € C(X),0<h < fon X}=rl"(f).

If f1,f2 € C(X) are non-negative, 0 < g; < f; and 0 < go < fo, then
1(g1) + U(g2) = (g1 + g2) and, since 0 < g1 + g2 < f1 + f2, it is implied
that 1(g1) + 1(g2) < IT(f1 + f2). Taking supremum over g; and g, we find
IH(f1) 1 (f2) STH(fi+ f2). Now, let 0 < g < fi+ fo. Weset g1 = min(fi,g),
from which 0 < g1 < f; and g1 < g. If we set go = g — g1, then it is easy to
see that 0 < go < f5 and, of course, g = g1 + go. Hence, I(g) = 1(g1) + I(g2) <
IT(f1) + 1T (f2), from which IT(f1 + f2) < IT(f1) +1T(f2). We conclude that
IF(fi + f2) =15 (f1) +1H(f2).

Until now, I (f) is defined only for non-negative f € C(X). For an arbitrary
real f € C(X) we write fT = 2(|f|+ f) > 0 and f~ = 3(|f| — f) > 0, whence
f=f*t— f~. We, then, define for each real f € C(X)

=0 =)

Observe that, if f = g — h for any non-negative g,h € C(X), then fT +h =
f~ +g, whence I*(fF) + 17 (h) =17 (f* +h) =17(f~ +9) =17(f7) +1*(9).
Hence, IT(f) =17 (g) — IT(h).

If fi,fo € C(X) are real, then from the last identity we get f1 + fo =
(i + ) = (fi + f3), whence I(fy + fo) = I(fi7 + f5) = U(fi +f7) =
) U 1) = 1) = 1) +1(Fa).

If f e C(X) isreal and £ > 0, then [T (skf) = IT(kfT) — T (kf~) =
KIT(fT) = KUY (f7) = wIT(f), while if k < 0, then I*(kf) = [T(||f7) —
FE(IslFT) = [RIEF(f7) = K[ (fF) = sI7(f).

If F' = R, we have already proved that [t : C(X) — R is a linear functional.

If F = C, for each complex f € C(X) we define

IE(f) =T (Rf) +il*(SF)

and it is easy to see that It : C(X) — C is a linear functional. If f €
C(X) is real, then [I(f)] = [IF(f*) — 1*(f7)] < max{i*(f+),05(f)} <
maX Ll £l (2011} = N2l ]l While, if f is complex, then, with
an appropriate £ € C with |k] = 1 we have |IT(f)| = st (f) = [T (sf) =
R(*H(kf) = 1 R(ES)) < NULIRES) e < 2] fllu- Therefore, I* is a non-
negative bounded linear functional of C'(X) with [IT|l. < ||I]..

We also define [~ = [T —[: C(X) — F. Clearly, this is a bounded linear
functional of C'(X) and it is non-negative, since for every non-negative f € C'(X)
we have [=(f) =1T(f) = I(f) > 0.

By part (A), there are two non-negative Borel measures pq and ps on X so
that I (f) = [y fdpr and I (f) = [ f dus for every f € C(X). Therefore, for
the real Borel measure 1 = 1 — pa we have I(f) =17 (f) =17 (f) = [y fdp1 —
Jx fdus = [ fdp for every f e C(X).
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At this point the proof is finished, if F' = C and [ is real or if F' = R (whence
I is automatically real).
(C) If F = C and [ is complex, then R(1) and (I) are bounded real R-linear
functionals of C'(X) and, hence, they are bounded R-linear functionals of C,.(X),
the R-linear space of real continuous functions on X. By the result of (B),
there are two real Borel measures p; and po, so that R(I(f)) = [y fdp1 and
S((f)) = [x fdps for every real f € C(X). Therefore, if we define pn = 1 +ipsz,
then p is a complex Borel measure on X and for every real f € C(X) we have
I(f) =RAS)+SUS) = [y fdu+i [ fdpz = [y fdp. Therefore, for every
J€ OO0, 1) = UR(P) + () = Jx RU) du+ i [ S() dp = [y ] d.

11.6 Exercises.

1. Approximation

(i) Let f € LP(X,%, 1) and € > 0. Using Theorem 6.1, prove that there
exists a measurable simple function ¢ on X so that ||f — ¢||, < e. If
p < +00, then ¢ = 0 outside a set of finite measure.

(ii) Let f € LP(R™, L, my,) and € > 0. If p < 400, prove that there exists
a function g continuous on R™ and equal to 0 outside some bounded set
so that ||f — g, <e.

2. Let I be any index set and 0 < p < g < +oc0. Prove that [?(I) C [9(I)
and that

16llg < 1121l
for every b € IP(I).

3. Let u(X) < 400 and 0 < p < ¢ < 4o0o0. Prove that LY(X, %, u) C
LP(X, %, u) and that

11
1fllp < w(X)? 77 [ fllq
for every f € LYUX, X%, u).

4. Let 0 <p<qg<r<+4ooand f e LP(X,X, u)NL (X, u). Prove that
f e LYX,%, u) and, if 5 =Lf+ 1=t then

1£llg < I

5. Let 1 <p<r<+4oo. Weset Z=LP(X,X, u)NL"(X, X, 1) and we define
1AL = 1l + [l for every f € Z.
(i) Prove that || - || is a norm on Z and that (Z, || - ||) is a Banach space.
(ii) If p < ¢ < r, consider the linear transformation 7' : Z — LI(X, X, p1)
with T(f) = f for every f € Z (see Exercise 11.5.4). Prove that T is
bounded.
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6.

10.

11.

12.

13.

Let 0 < p<g<r<+4ooand f € LYX,X, u). If t > 0 is arbitrary,
consider the functions

[ f@), i) >t {0 @) >t
9@‘{0, if | F(a)] <t W)—{f(x), if | fa)| <t -

Prove that g € LP(X, %, u) and h € L™(X, %, u) and that f = g+ h on X.

Let 1 < p <r < +oo. Wedefine W = LP(X, X u) + L"(X, X, u) =
{f9+hlge LP(X,%,u),h € L"(X, %, 1)} and

I£1l = inf {llgll, + Iall- | g € LP(X, 5, u), h € L™(X, 3, p), f = g+ h}

for every f € W.

(i) Prove that || - || is a norm on W and that (W, || - ||) is a Banach space.
(ii) If p < g < r, consider the linear transformation T': LY(X, X, u) — W
with T'(f) = f for every f € LY(X, X, u) (see Exercise 11.5.6). Prove that
T is bounded.

Let 0 < p < ¢ < 4o00. Prove that LP(X,X,u) € LYX,%, pu) if and
only if X includes sets of arbitrarily small positive measure and that
LUX, Y, p) € LP(X, X, n) if and only if X includes sets of arbitrarily
large finite measure.

Let 1 < p < 400 and (f,) be a sequence in LP(X,X, 1) so that |f,| < g
a.e. on X for every n for some g € LP(X, %, u). If (f,,) converges to f a.e.
on X or in measure, prove that || f, — f|l, — 0.

Let 1 <p < +4oo0and f, f, € LP(X, %, ) for all n. If f,, — f a.e. on X,
prove that || f, — fll, — 0 if and only if || fnll, — IIf]l,-

Let 1 < p < 400 and g € L®(X,%, ). We define the linear trans-
formation T : LP(X,X,u) — LP(X,X,u) with T(f) = gf for every
f € LP(X, %, n). Prove that T is bounded, that | T|| < |lg|lcc and that
ITIl = [lglloo if p is semifinite.

The inequality of Chebychev.
If0<p<+ooand f e LP(X,3, u), prove that

17115

, 0<t<+o0.
tp

Api(®) <

The general Minkowski’s Inequality.

Let (X1,%1,p1) and (X3, ¥g, u2) be two o-finite measure spaces and 1 <
p < +o00.
(i) If f: X1 x Xo — [0, +00] is ¥1 ® Xp—measurable, prove that

(/Xl( 8 (w)duz)pdul);S/X
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( ; (',')pdm)%duz.
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(ii) If f(-,z2) € LP(X7, %1, p1) for ps-a.e. x9 € Xo and the function x4 —
£ z2)|p isin LY (Xa, $a, o), prove that f(x1,-) € L' (X2, Ba, po) for p-
a.e. 1 € X1, that the function z; fX2 f(z1, ") dus is in LP(X1, %1, u1)

and
(/f, (/. £ dun ) da

() d#z‘p dm)% < /

X

X2

261



