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acoustic wave is an éefficient carrier of information
‘on the medium through which it has propagated.

~ Measurements of an acoustic field in an oceanic
~ waveguide provide extremely useful data for the
inverse problem of determining parameters of the

medium.
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Use of sonar techniques

An acoustic beam is sent to the sea-bottom
~ Interface.

o

— The reflected signal after suitable processing
provide the information on the sea-bed structure.

Narrow beams provide the resolution necessary
to identify the geometrical properties of objects
In the sea-bed.



Wrecks of battle ships sunk during the D-Day off-shore Normandy as
they are reconstructed using acoustic techniques




A wreck off-shore the
Aegina island in Greece.
Probably commercial
ship of 100 m length
(HCMR)



Image of the Titanic’'s wreck transmitted
acoustically in the late '80s !!
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Bottom recognition using a parametric array
as a source and a hydrophone streamer as a
receiver ( REBECCA - SIGMA)
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Sea and Climate

Some Facts......

Even slight variations in the temperature of
the sea currents at a certain region may affect
the temperature of the atmosphere and the
= meteorological phenomena all over the

o globe.

# Itis not possible to obtain long-term
predictions of climate change without taking
Into account the ocean circulation.



‘Ocean acoustic tomography was introduced by Munk and
- Wunsch in 1979 following a demonstration in the “70s that
~about 99% of the kinetic energy of the ocean circulation is
' 2d with mesoscale features, that is features that are
about 100 km in diameter.

Walter Munk 13



A larger-scale
es is therefore a useful process on the way of
= understanding global changes.

Use Acoustics !!
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,ound propagates in a Wavegmde in
_f-’d|fferent ways, (rays or modes) the
ﬂUmber and type of which depend on
the geometry, the environmental
parameters and the frequency
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Fig. 1.1. Generic sound-speed profiles.
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Ray plots



Ray plots
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5. Contour Plot - stdelast [IMP2D]

Transmizsion Loss versus Range and Depth (in dB / wawvelength)
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- Measurements related to acoustic rays or
~ propagation modes can therefore be used for
- the estimation of the environmental parameters.

I

"_ese parameters include the characteristics of the
~ water column (sound speed and density) and
= the sea-bed (compressional and shear wave

speeds, densities, attenuation coefficients and
thickness of the bottom layers.

—_—
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a 3-D iew of the ocean environment we
) define severa 2S (TopEG — tomes) In

‘one of which to apply inversion procedures

: pr| +Cpapn =——=>  Topoypagia - Tomography
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ical Concept of Vertical Slice"OceaWaphg

l Propagation paths
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The geomeltry at a vertical slice

Sound speed profile c,(2)

Bottom Sound speed profile cy(2)
Density p
Shear speed cs(z2)
Attenuation apas
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The geomeltry at a vertical slice

Sound speed profile cy(2)

Bottom Sound speed profile cy(2)
Density p
Shear speed cs(z2)
Attenuation apas
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THE INVERSE PROBLEM
OF OCEAN ACOUSTIC TOMOGRAPHY

Given a set of measurements of the acoustic

pressure at specific ranges and depths for a
given source, estimate the sound speed in the
water column c¢(x,y,z) and/or the current
velocity v(x,y,z)
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Acleliiional unknowns © The exact position of source and
eceiver. The bottom structure (combined with bottom
ssification) -

1/0s of sources © Special modulated sources. Sometimes
~ Cw sources. Also, alternative, providing transient signals.

P
_}_r
v -~

N

p—

Type of measurements : Usually time series of the emitted
signal at a single hydrophone or at an array of
hydrophones. From the time series one can obtain by
Fourier transform the acoustic field in the frequency
domain.
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Reception of a tomographic signal in the ocean environment
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acoustic propagation in the marine environment
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‘The forward ..problggh —

= _
- p(X,1)=A(X—X_,t
c*(X) )

+ boundary conditions

Harmonic waves : Helmholtz equation

-t
. I 2
“

V2p(X;0)+—— p(X;0) = —5(X—X, )
c2(X)
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p(r,z;t)=3"[p(r,z,0)];0 >t
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A monochromatic wave Is characterized by its
amplitude and period (in theory it has infinite
duration)

N
VY.

A broad-band wave is characterized by a finite
duration and several peaks
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Z 7 Geometry of an environment with axial symmetry and
multiple fluid layers
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p(l)('!O) =0
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= lim p*Y (., 2) =0

Sommerfeld radiation condition
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The “Depth Prqo.blemz’
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Boundary Conditiow
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By representation theorem Z'M -
- pressure can be expanded in terms of
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o(r, 2;0) = 4;)1 > H (6,00, (251000, (z:0)
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Propagating Modes
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kA,,(x) are obtained through the eikonal and transport equations

D
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The pressure field in the time domain
= p(X.t) = a,(X)3(t—7,(X))
= il n=1

1,is the arival time of
the n" eigenray

. _J‘ ds
" dn (%) +v(X)
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Pressure MUItIpath PropagatiOn

Source Receiver

Sound Speed

Measurement _ _
Theoretical Reception

41



