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The geometry at a vertical slice 
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By representation theorem the acoustic 
pressure can be expanded in terms of 

the eigenfunctions of the Depth Problem 
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The pressure in the time domain 

                          Broad-band propagation 
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Each mode propagates at a different group velocity   
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Ray Inversions 

Linearizing with respect to a reference environment  
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Ray Inversions 

Model  ? 

Determination of the eigen-ray path Γn 

Parameters   ? 
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Definition οf an inverse problem of the form:  

i id G ( x )m( x )dx 

After suitable discretization  
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Discrete Linear Inverse Problem 

We need the theory to predict  iG ( x )
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c( z ) f ( z ) 

Using Empirical Orthogonal Functions 

Additional a-priori 
information ! 

c( r,z ) ( r ) f ( z ) 
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Ray arrivals can be resolved and identified ! 

If not 

Necessary Assumption : 

Check for modal arrivals !! 
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Modal Travel-Time Inversions 

If modal arrivals can be resolved and identified !!   

Modal packets travel with their respective group velocity  
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Linearizing with respect to a reference environment we 
get an expression of the travel time differences in terms 

of sound speed differences 
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From theory and assuming low order perturbations 



18 

1

M

n nk k

k

d G m




By suitable discretization or expression of the sound 
speed difference in terms of EOFs we define a linear 

system of the form  
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n=1,…….N 

N : number of identifiable modal arrivals 
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Integration in depth is performed analytically 
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Advantages of linear methods : 

• Easy to implement 

• Computationally efficient and fast 

Disadvantages of linear methods : 

• Require good a-priori knowledge of the  
  environment 

• The kernel matrix sometimes is characterized by  
  bad condition  
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Measurements  (Data) 

• We need to define the “observables” 

• They have to be easily measured or inferred after 
some post-processing of the measured data. 

• They should be sensible to changes of the 
environmental parameters. 
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Measurements  (Data) 

• Measurements are always the acoustic field 
either at a single hydrophone or on an array of 
hydrophones. 

• The data to be used in the inverse problem can 
be 
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Measurements  (Data) 

– The field at a specific frequency or at a frequency 
band (acoustic pressure) 

– The ray or modal arrivals (time of arrival) 

– The dispersion curves (characteristic of modal 
propagation) 

– The modal “phase” for each one of the propagating 
modes 

– Statistical or probabilistic features of the signal 
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Matched Field Inversions 
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Matching at a single frequency : 

Perform  Discrete Fourier Transform to 
obtain the field in the frequency domain at 

each one of the N hydrophones 

If a vertical array of hydrophones is available,  
the full-field can be used for inversions 
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Optimization Process !! 

•  Collect measurements of the acoustic field in N  1  

   hydrophones 

•  Select a propagation model and use it to compute the  
    acoustic field for candidate model parameters 

•  Use a suitable processor to cross-correlate the measured  
    with modelled/predicted replica fields and search for the  
    highest correlation 
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Measured in N 
hydrophones  

1 2

T

N( F ,F ,...F )F

Modeled  for  N 
hydrophones  
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mest will be the vector maximizing the Processor 

Bartlett processor 

For normalized data, maximum of the L(m) is 1 
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Necessary Condition : Identification of the type of signal peaks: 

  

Inversions based on travel time 
 

Not always easy ! 
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Hypothesis : Identification of  N modal arrivals 

Inversions based on modal travel time 
 

Replica fields are produced based on the pre-
specified search space of the model 
parameters.  
 
Use of the group velocities calculated for the 
modes of the replica fields to identify the 
modeled arrivals of the propagating modes , 
 
Define the actual modal arrivals  tn  and 
compare the corresponding times with the 
arrival times of the replica signals. 
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  The inverse problem is formulated as an implicit 
non-linear problem  
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nt g( )  m

Define an appropriate processor P  to solve the 
inverse problem as an optimization process 
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Test case    

A description of the test environment based on the benchmark 
case WAa of the Vancouver 97 Workshop  
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                 Arrival pattern  (f 0 =112 Hz) 
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The cost function over the whole search 
space for the sediment properties 

Minimum 
of the cost 
function 
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Inversion results 

Parameter Actual Reference Recovered 

1516,2 1506,1 1517,44 

1573,2 1539,5 1569,84 

( )sedC D

( )sedC D h

A systematic search over the search space has been 
performed  
 
No specific optimization algorithms have been applied  


