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The geometry at a vertical slice

Sound speed profile c,(2)

Bottom Sound speed profile cy(2)
Density p
Shear speed cs(z2)
Attenuation apas
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By representation theorerm tM _—
 pressure can be expanded in terms of
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Broad-band propagation
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- p(r.z,0)=p(r,z;0)S(0)
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~ The pressure in the time domain

4- 2 p(r,z;t)=37[p'(r,z,0);0 > t]






Each mode propagates at a different group velocity
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-Ray Inyeﬁions_{" —

iz i with resgg,g i"15"'.0 _a'_'reerence environment

C()_(>)=.CO();()+5C()_(>)

oT, = j 5(2:()i)ds
= T, Co (X)
—
= dn :J- VEX_? ds
7 G (X)
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Ray Inversions.j —
- —_— —
| egiae | oc(X)
~ (v V4 57«- — ds
o)
= Model ?
c= - Determination of the eigen-ray path I,
—— Parameters ?
oc(X)
Measurements ?
ot >,
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0. = | G.( X X )ax

> need the theory to predict Gi(X)

After suitable discretization
= N
~ d = le G,m,
|=

Discrete Linear Inverse Problem

Definition of affinverse problem of the form:
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Using Empirical Orthogonal Functions

5C(Z)=Z(9€f€(2)
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Additional a-priori
information !
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Neéess!Fy;Assumption ~—

-
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Ray/ alfivals Can BE FESOIVEM and Iaentiiied!

If not

Check for modal arrivals !!
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Modal Travel-Time Inversions

It modal arrivals can be resoived and identified !!

Modal packets travel with their respective group velocity v, -
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Nith respect to a referenm wes

.expression of the travel time differences in terms
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From theory and assuming low order perturbations

02 =
0( % ‘2k 5C(X)d)_(,

5 - 1I Ly (
Co(X)

K, 2 p(X)
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- ’ e —
uitable discretization or expression of the sound
d difference in terms of EOFs we define a linear

ST 50° \
=Y S| i dse Azar
= Wy i=1 j:]-\ aa) 500/
".'"'-jtf === d —or,
n=1,....... N
M
dn = ZGnkmk
k=1

N : number of identifiable modal arrivals 18



oC(Z)) i=1,..l

\ ]=1,...
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\\ M=IxJ
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ing EOFs  oc(r,z)=> 6,(r)f,(z) ->5c(5;z)=296,jfzgz)
- . - g\r
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( 6 ! ) Receiver

= ANEEE)

b4 Ad Integration in depth is performed analytically
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Disacdvantages of linear methocds :

e Require good a-priori knowledge of the
environment

e The kernel matrix sometimes is characterized by
bad condition
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- Non linear methods
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easurements (Data)

e heed to define the “observables”

f‘f They have to be easily measured or inferred after
- some post-processing of the measured data.

=—o They should be sensible to changes of the
~ environmental parameters.

—
",
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z.g}fl:é’asurements (Data)

s Measurements are always the acoustic field

P—

24



Measurements (Data)

_—-— e
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o= Th'e field at a specific frequency or at a frequency
band (acoustic pressure)

" — The ray or modal arrivals (time of arrival)

= - — The dispersion curves (characteristic of modal

= propagation)

- The modal “phase” for each one of the propagating
modes

— Statistical or probabilistic features of the signal
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- If a vertical array of hydrophones is available,
- the full-field can be used for inversions

Matching at a single frequency :

?-fi—_:-: ~ Perform Discrete Fourier Transform to
== obtain the field in the frequency domain at
: each one of the N hydrophones

K -
F(X0)=) p.(X;t )w(t, e
k=0
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e Collect measurements of the acoustic fieldin N > 1
hydrophones

| e Select a propagation model and use it to compute the
acoustic field for candidate model parameters

; » Use a suitable processor to cross-correlate the measured
= with modelled/predicted replica fields and search for the
highest correlation

Optimization Process!!



_— Modeled for N

Bartlett processor

mest will be the vector maximizing the Processor

For normalized data, maximum of the L(m)is 1
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Inversions based on travel time

Necessary Condition . Identification of the type of signal peaks:

Not always easy !

AS



Inversions based on modal travel time

Hypothesis . Identification of N modal arrivals

:plica flelds are produced based on the pre-
pecified search space of the model
parameters.

~ modes of the replica fields to identify the £ n=1.N
modeled arrivals of the propagating modes ,

Define the actual modal arrivals ¢, and
compare the corresponding times with the ot, =t -t

arrival times of the replica signals.
30



ot, =g(m)

Deﬁne an appropriate processor P to solve the
inverse problem as an optimization process

[\
P(5t )= \/ﬁZmnz
n=1
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Test case

c{0)=1480 m/s

g
source wrater

c(z)

c({D)=1460 m/s

LN |
sediment Bgm
A

o, =0.23d

half—space

o =0.23dB/A
hsp

A description of the test environment based on the benchmark
case WAa of the Vancouver 97 Workshop
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The cost function over the whole search
space for the sediment properties
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- . Inversion results

C.s(D)  1516,2  1506,1 151744
Ces(D+h) 15732  1539,5  1569,84

A systematic search over the search space has been
performed

No specific optimization algorithms have been applied
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