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The geomeltry at a vertical slice

Sound speed profile c,(2)

Bottom Sound speed profile cy(2)
Density p
Shear speed cs(z2)
Attenuation apas
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By representation theorem Z'M -
- pressure can be expanded in terms of
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Broad-band propagation
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- p(r.z,0)=p(r,z;0)S(0)
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~ The pressure in the time domain

2 =n(r,2:t)= 3 p(r,z,m);0—>t]






Each mode propagates at a different group velocity
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Using Dispersion Curves

When the identification of modes at the central

* frequency is difficult, due to the peculiarity of the
- dispersion characteristics of the medium, the full
dispersion curves can be used to resolve the
possible ambiguity or to be used as alternative
observables for inversion.

Dispersion curves show the arrival time as a function
of frequency for each propagating mode






By 2-D Fourier transform or Wavelet transform in the

measured signal, we can obtain the scalogram

(spectrogram) of the received signal which indicates the
~ propagation of the modal packets in the environment.

s_“;._l'deallx the dispersion curves should be at the peaks of
- the propagating modes/

r_min = r_max =20000 m, max_mod= 199, Clear




. an appropriate

E he jnversion scheme

Cajculate the d/'g(oersion curves of the.measured signal usin,
-D transform (measured dispersion curves

Calculate the dispersion curves for each one of elements of a
search space (estimated dispersion curves).

Define an appropriate cost function to measure the difference
between measured and estimated dispersion curves.

Define the solution of the inverse problem as the environment
yielding the minimum distance between estimated and
measured dispersion curves.

All methods applied to standard optimization schemes
(Simulated Annealing, Genetic Algorithms, Neural Networks..)
can in principle be used in this context as well to optimize the
search procedures)

10



u
Hl J‘r.

e arrival pattern
!W
H

0.02 ‘
0.01 “
0 e caca g prnam N p ne
0 62 64 66 68



The dispersion curves
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The Scalogram using Morlet’s wavelet

MSC, f0T=2.3, Nf=400, log. scale, imagesc, Threshold=0.04%
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The Scalogram using Morlet’s wavelet

MSC, f0T=2.3, Nf=400, log. scale, imagesc, Threshold=0.04%
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Disadvantages of traditional
observables

> They are not always identified (e.g. ray arrivals,
- modal arrivals, modal phase)

-

?:35; The functional relationship between the
~  traditional observables and the recoverable
parameters sometimes is not sensitive enough to

the change of observables

» The type of observables is highly related to the
geometry of the environment.
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“s Select properties of the transformed signal
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—
o

-which uniquely characterize the acoustic signal
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..S’;a?cistical Signal Characterization

e S -

The acoustic signal is “characterized” by a set
= of coefficients which describe statistical
- distributions of specific signal parameters

i

Statistical

Transformation Modeling
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Statistical Signal Characterization

» Apply wavelet transform at various levels
» Extract the wavelet sub-band coefficients

low-pass downsample  approximation coefs

e iy

high-pass downsample detail coefs

Convolve with filter X

Keep the even indexed elements
(We call this operation downsampling.)
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Statistical Signal Characterization

‘coefficients with a member of a family of probability
;"ensity functions (PDFs) p(x; ©;)

ML
— _(0,)
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e
atistical Signal Characterization

o

- The marginal distributions are modeled using
- Symmetric Alpha-Stable (SaS) distributions,
which are best described by the Characteristic
Function:

Here, 0=0
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~ Statistical Signal Characterization

»

_I~Each signal is characterized by parameters gand y
- of the detailed coefficients in each one of the 7
~ bands of decomposition plus the approximate

== Thus, the signal is characterized by 2x@+1)
observables

a1’7/1’az ’7/2 ""'aI ’7I,a1+1’7/1+1,
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r’%tatiétical Signal Characterization

Similarity measurement : Comparison
between two signals using statistical features.

Use the Kullback-Leibler Divergence (KLD or
Relative Entropy) between two PDFs

p(x;0,)
(X;0;)

dx

d, = D(p(X;0,)1l p(X;0,)) = [ p(x;8,)log ;
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;—-Statlstlcal Signal Characterization

¢ _ullback—LelbIer Distance between normalized
- Characteristic Functions

”
- NFE c, | 1 (7| T
;'l D(¢q ”ﬁ)lﬂ[iJ__'_ ‘h
_;-"_'-' g C¢?q A
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%

~ « Each signal is represented by four sub-bands d. denotes
the detailed coefficients and a denote the approximate
coefficients

(dl’dZ’dsias) di =(7/i,ai)

e We assume that sub-band coefficients are mutually

independent
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Taroudakis et al.
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It has been shown that the Kullback-Leibler
Divergence (KLD) in connection with the statistical

modeling, has the sensitivity properties which are
necessary in order that this function is used for the

characterization of an underwater signal.

db4, only DETAILS

Taroudakis et al.
ICTCAO5 (2005)
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PP

- Summary of non-linear methods
‘ in acoustical oceanography

m= (Ci ’Csi ’/Oi ’api ’aspidi ’ZO’Z’R)

-

- Measurements at a single Hydrophone (S) or at an
array of Hydrophones (A)

—
s —_

-

A-priori information : Number of layers, Search space,
EOFs
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Summary of non-linear methods
in acoustical oceanography

Solution methods

- Matched-Field (A) The Fourier transform Bartlett or
' acoustic equivalent
field at w

Matched-Travel Travel time  Identification of modal or Normal-Mode Least square
time (S) for each ray arrivals Ray
mode or ray

Dispersion Dispersion 2-D Fourier transform or  Normal-Mode Various
Analysis (S) curves wavelet transform

Statistical (S) Statistical Wavelet transform — All KLD
parameters  Multilayer analysis-
of the Statistical Description
wavelet
transform
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_Methods developed for the individual problems
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-.,'_ “}- » Pure statistical-probabilistic processing
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' -' “A Genetic Algorithm with a-posteriori statistical

.-:,j ~analysis of the population
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Using RBF NN

~ > Parameters that have to be learned for an RBF
NN with the given architecture:
« The centers ! of the RBF activation functions

o The spreads o, (we use activation functions with the
same spread parameter)

« The weights w;; from the hidden to the output layer

> Apply a learning algorithm for determining the
above RBF network parameters.
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Experimental Results using RBF NN

» The shallow-water environment

Water Depth
Source Depth
Receiver Depth
Range

Central Frequency
Bandwidth

Sound speed

Depth of the ¢,

Sound speed in
bottom

Bottom density

200 m

100 m

100 m
5000 m
100 Hz

40 Hz

1500 m/sec
1490 m/sec
1515 m/sec
50 m

1600 m/sec

1200 kg/m3

[1550,1650
]

[1170,1240
]
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Experimental Results using RBF NN

ynthetic signals’ database

" {c,, <[1550:5:1650] m/sec, p,, €[1170:1:1240] kg/m’}
~ — 1491 signals = input X = (&, 7,1 Ay, 74)

=

= %_l-“Decompose each signal with a 3-level DWT (with
db4 wavelet)

> RBF NN construction using the estimated Sas
parameters of a subset of M=200,300 training
signals obtained from distinct environments
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Experimental Results using RBF NN

pressure [pR,(t)]
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True: True:

(c,, 0y, ) =(1570,1185) (¢, oy, ) =(1600,1200)
Estimated : Estimated :

(Cy» 0y ) = (1569.4,1181.8) (C,» 0y, ) = (1600.7,1201.8)
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