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By representation theorem the acoustic 
pressure can be expanded in terms of 

the eigenfunctions of the Depth Problem 
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The pressure in the time domain 

                          Broad-band propagation 
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Each mode propagates at a different group velocity   
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Using Dispersion Curves 

   When the identification of modes at the central 

frequency is difficult, due to the peculiarity of the 
dispersion characteristics of the medium, the full 

dispersion curves can be used to resolve the 
possible ambiguity or to be used as alternative 

observables for inversion. 

 

Dispersion curves show the arrival time as  a function 
of frequency for each propagating mode 
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By 2-D Fourier transform or Wavelet transform in the 
measured signal, we can obtain the scalogram 
(spectrogram) of the received signal which indicates the 
propagation of the modal packets in the environment. 
 
Ideally, the dispersion curves should be at the peaks of 
the propagating modesl 



10 

The inversion scheme 

• Calculate the dispersion curves of the measured signal using 
an appropriate 2-D transform (measured dispersion curves) 

• Calculate the dispersion curves for  each one of elements of a 
search space (estimated dispersion curves). 

• Define an appropriate cost function to measure the difference 
between measured and estimated dispersion curves. 

• Define the solution of the inverse problem as the environment 
yielding the minimum distance between estimated and 
measured dispersion curves. 

• All methods applied to standard optimization schemes 
(Simulated Annealing, Genetic Algorithms, Neural Networks..) 
can in principle be used in this context as well to optimize the 
search procedures) 

     (Potty and Miller J.C.A. 2000, J.A.S.A. 2000, Bonell et al. JASA 2012) 
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The arrival pattern 
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The dispersion curves 
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The  Scalogram using Morlet’s  wavelet  
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The  Scalogram using Morlet’s  wavelet  



Disadvantages of traditional 
observables 

 

They are not always identified (e.g. ray arrivals, 
modal arrivals, modal phase) 

The functional relationship between the 
traditional observables and the recoverable 
parameters sometimes is not sensitive enough to 
the change of observables 

The type of observables is highly related to the 
geometry of the environment. 
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A new Approach 

• Use characteristics of a transformed version of 
the acoustic signal. 

 

• Select properties of the transformed signal 
which uniquely characterize the acoustic signal  
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Statistical Signal Characterization 

 

The acoustic signal is “characterized” by  a set 
of coefficients which describe statistical 
distributions of specific signal parameters  

 

Statistical 
Modeling 

Feature 
Extraction 

Signal 
Transformation 

17 



Apply wavelet transform at various levels 
Extract the wavelet sub-band coefficients 

18 

Statistical Signal Characterization 



• Fit the marginal distribution of wavelet sub-band 
coefficients with a member of a family of probability 
density functions (PDFs)  p(x; θi) 

• Feature Extraction := Estimate the model parameters θi 
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Statistical Signal Characterization 
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Statistical Signal Characterization 

 The marginal distributions are modeled using 
Symmetric Alpha-Stable (SαS) distributions, 
which are best described by the Characteristic 
Function: 
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Here, δ=0 



Statistical Signal Characterization 
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Each signal is characterized by parameters α and γ  
of the detailed coefficients in each one of the I 
bands of decomposition plus the approximate 
coefficients of the I th band. 
 

Thus, the signal is characterized by 2x(I+1) 

observables : 
 

 1 1 2 2 1 1, ,a , ,a , ,....a , a ,      



Statistical Signal Characterization 

 Similarity measurement : Comparison 
between two signals using statistical features. 

 Use the Kullback-Leibler Divergence (KLD or 
Relative Entropy) between two PDFs 
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Statistical Signal Characterization 
 

 
• Kullback-Leibler Distance between normalized 

Characteristic Functions 

               

 

 
• Each signal is represented by four sub-bands di denotes 

the detailed coefficients and α denote the approximate 
coefficients 

 

 

• We assume that sub-band coefficients are mutually 
independent 
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Taroudakis et al.    
JASA 119, 1396-1405 (2006)  

Statistical Signal Characterization 
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    It has been shown that the Kullback-Leibler 
Divergence (KLD) in connection with the statistical 
modeling, has the sensitivity properties which are 
necessary in order that this function is used for the 
characterization of an underwater signal. 

 

Taroudakis et al.    
ICTCA05 (2005)  
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Summary of non-linear methods 
in acoustical oceanography  

 0i si i pi spi im c ,c , ,a ,a d ,z ,z,R

 0i si i pi spi im c ,c , ,a ,a d ,z ,z,R

Recoverable 
Parameters 

Measurements at a single Hydrophone (S) or at an 
array of Hydrophones (A) 

A-priori information : Number of layers, Search space, 
EOFs 
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Data Post processing 
analysis 

Propagation 
Model 

Processor 

Matched-Field  (A) The 
acoustic 
field at ω 

Fourier transform All Bartlett or 
equivalent 

Matched-Travel 
time  (S) 

Travel time 
for each 
mode or ray 

Identification of modal or 
ray arrivals 

Normal-Mode 
Ray 

Least square  

Dispersion 
Analysis (S) 

Dispersion 
curves 

2-D Fourier transform or 
wavelet transform 

Normal-Mode Various 

Statistical (S) Statistical 
parameters 
of the 
wavelet 
transform 

Wavelet transform – 
Multilayer analysis- 
Statistical Description 

All KLD 

Summary of non-linear methods 
in acoustical oceanography  

Solution methods 
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How to perform an efficient search 

(optimization)  

   Simulated Annealing 

  Genetic Algorithms 

  Methods developed for the individual problems  

  Machine learning  (Neural Networks) 

  Pure statistical-probabilistic processing 



 

•  A Radial Basis Functions Neural Network  
 (RBF NN) 

 

•  A Genetic Algorithm with a-posteriori statistical   
 analysis of the population  

 

Inversion Procedure 
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Using RBF NN 
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Using RBF NN 
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 Parameters that have to be learned for an RBF 
NN with the given architecture: 

 The centers μj
 of the RBF activation functions 

 The spreads σj  (we use activation functions with the 

same spread parameter) 

 The weights wi,j from the hidden to the output layer 

Apply a learning algorithm for determining the 
above RBF network parameters.  

Using RBF NN 
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 The shallow-water environment 
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Source 

Water 

Receiver 

 Bottom 

Description Symb
ol 

True Value Search 
Space 

Water Depth h 200 m 

Source Depth z0 100 m 

Receiver Depth zR 100 m 

Range R 5000 m 

Central Frequency f0 100 Hz 

Bandwidth Δf 40 Hz 

Sound speed cw(0) 1500 m/sec 

cw(d) 1490 m/sec 

cw(h) 1515 m/sec 

Depth of the cmin d 50 m 

Sound speed in 
bottom 

cb 1600 m/sec [1550,1650
] 

Bottom density ρb 1200 kg/m3 [1170,1240
] 

Experimental Results  using RBF NN 



 Synthetic signals’ database   

 

 

 

Decompose each signal with a 3-level DWT (with 
db4 wavelet) 

RBF NN construction using the estimated SαS 
parameters of a subset of M=200,300 training 
signals obtained from distinct environments                                   
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Experimental Results  using RBF NN 
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Experimental Results  using RBF NN 


