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Definition. We define the norm of a bounded linear operator L to be the

number ||L|| := inf{K € R | L]l < K||z|| for all z € D}. With this

definition, we have

L]l < LI l=]l-

Fact. ||L|| = suPoxzeD ”TIIJTZIF To see this, note that lf" < ||L|| for all
z € D,z # 0, and in particular supx,eD H"Lﬁlll =: M < ||L||. But, on the,;.l
other hand || Lz|| = {f&l||zl| < Ml|z|| for 0 # & € D, and thus L < M. =

This shows that M < ||L|| £ M, and the assertion is established. 0

The norm of L can also be written in the form ||L|| = supjzj=1 HLzu‘

It is easy to show that the mapping |L|| satisfies the properties of a norm,
Moreover, the product (L1 L))z = Ly(Lyz) of two linear operators L a.n.
L, satisfies the inequality 3

4

L1 La || < | Lall |2,
since [|(L1 L2)e]| < [|Lall | Zazll < [ Eall | Ll 1zl
Application. We consider once again the two examples of linear operators

given above. ‘
Ezample 1. The integral operator J : Cla, 5] — R on the space (C[a, b, || - lleo)

is a bounded linear operator since

b

b b it
| £l = I/ w(z)f(z)dz| S/ w(z)dz||flleo for w(z) >0in (a,b), j

and thus ||J|| = SUP|| ||, =1 |7f] < fab w(z)dz. Since J is a mapping into R, i
is in fact a bounded linear functional. ]

We also note that for the element f* := 1, the estimate supj s =1 |Jfl 2
2 | ILf* = f: w(z)dz holds, and thus || J|| = f: w(z)dz. Combining these w.‘

we conclude that the norm of J is given by |7 = f: w(z)dz. o

Ezample 2. In view of the results in 2.4.2, it follows that every finite-dimensio 12
matrix is a bounded linear operator. Various matrix norms were calculated in 2.4.9

1.6 Problems. 1) Show that the mapping ;
: |
a:Ci[0,1] = R, a(f) = ( / F@Pu(as)t + sup G
0 r€[0,1

defines a norm on C1[0,1]. Is this norm strict if w(z) =17 3
2) Let || - ||la and || - [|s be norms on the linear space V and suppose th
|| - |l is strict. Show that the norm vl == llvlla + [[v]ls on V is also strict.

3) Show that the mapping

a:Cm(@) > R, a(f)="2 max | D" f(z)|

|ylgm *

2. The Approximation Theorems of Weierstrass 125

defines a norm on the linear space Cn(G), and that C,,(G) equipped with
this norm is a Banach space.

4) .Let (V, |l - ) be a normed linear space over IR. Show that the norm
|-l is induced by an inner product (-,-) if and only if the “parallelogram
law”

If +gl* +11f = gll* = 231 £1* + llgll*)

holds for all f,g € V. Note that in (R?, ] - ||2), the parallelogram law with
(z,y) = 0 reduces to the Pythagorean Theorem.

Hint: Assume (f,g) := Z(If + gl = If — gll®).

5) By investigating the convergence of the sequence (fn),ezz, defined
on [a,b] := [-1,+1] by i

-1 for r € [-1,-1]
fa(z):={{ nz forze [—%,.}_'%]

1 for z € [%,1],

show that the linear space C[a, b] is not complete with respect to either the
norm || - ||2 or the norm || - ||;.

6) Show that the mapping Ff := Y [ @, f(z,), @, € R defined for
functions f € C[a,b] is a bounded linear functional on the normed linear
space (Cla,b], || - ||oo), and that ||F|| = 37 |a, |.

2. The Approximation Theorems of Weierstrass

We begin our discussion of approximation theory with the classical problem
of approximating a function. A more general approximation problem will
be treated later in this chapter. In this section we shall present several
app.roximation theorems of Weierstrass which show how to approximate an
arbitrary continuous function by simple functions.

2. . . . .
1 Appr0x1matlon by Polynomials. It is known from calculus that an
analytic function f can be written as a power series

f(z)=aota1z +---+anz™ +---

Whi . . .
i ch uniformly converges to the function f inside a certain convergence
Interval,

Consider now the sequence (on), N of partial sums of the power series

defined by

(Tn(.’t) =aot+ar+--- 4 apz™.
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Then it is clear that for every € > 0, there exists a number N(¢) € IN such.

that || f — on|le < € for every n > N. In other words, for any given interval, -

there always exists a polynomial which uniformly approximates the a.na.lytlc
function arbitrarily well.

It is now natural to ask whether a similar assertion still holds if we
assume only that f is continuous. In general, such an approximation cannot
be in the form of a power series, since as is well known, power series repre-
sent functions which are infinitely differentiable, whereas certainly not eVery
continuous function f has derivatives. Y

We answer this question in the following section by establishing ¢
classical approximation theorem of Weierstrass. Although we shall la
discuss a more general theorem of Korovkin, it is worthwhile to first pres
the original Weierstrass Theorem with a direct proof. Indeed, in this way
we can formulate the theorem in a simple instructive way, and moreover, we
can give a constructive proof due to S. N. BERNSTEIN in 1912 which serves

to motivate the later results of P. P. KOROVKIN. !
KARL WEIERSTRASS (1815-1897) established his approximation theorems
in the paper «Uber die analytische Darstellbarkeit sogenannter willkiirlicher Funk:
tionen reeller Argumente” (Sitzg. ber. Kgl. Preuss. Akad. d. Wiss. Berlin 18
pp. 663-639, 789-805). He gave non-constructive proofs of his theorems. Wei
strass became famous primarily for his fundamental results in analysis. He
considered to be one of the founders of modern function theory; the starting poin
of his work is the power series. In addition, Weierstrass fully understood the grea
importance of mathematics for applications to problems in physics and a.stronom y.
For this reason he gave mathematics a leading position,“since through it alone ca
one obtain a truely satisfactory understanding of nature”. (Quote from I. Run g
([1949], p. 29)).

Because of its potential applications, we now present S. N. Bernstein’s
constructive proof of the approximation theorem for continuous functions
The so-called Bernstein polynomials which appear in the proof came origk
nally from probability theory. '

Before proceeding, we mention that there are a series of alternatit
proofs of these approximation theorems, for example by E. LANDAU (1908);
H. LEBESGUE (1908), and others. We also mention a generalization to topo:
logical spaces due to M. H. STONE (1948).

=

2.2 The Approximation Theorem for Continuous Functions. n
this section we prove that every continuous function on a given finite closed
interval can be uniformly approximated arbitrarily well by a polynomiak
This means that the polynomials are dense in the space C[a, b] of continuous
functions. !
Let P, denote the (n + 1)-dimensional linear space of all polynoml

of maximal degree n over the field R, defined by

P, := {p € C(—00,+00) | P(@) = )" a,2"}

v=0
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Approximation Theorem of Weierstrass. Let —co < a < b < +o0,
and suppose that f € Cl[a,b] is an arbitrary continuous function. Then for
every € > 0, there exists an n € IN and a polynomial p € P, such that
[|f = Pllo <e.

Proof. Since every interval [a, b] can be mapped onto [0, 1] by a linear trans—
formation, we may restrict our attention to the case [a,8] := [0,1].
establish the theorem, we shall show that the sequence (B, f) of Bernstcm-
Polynomials

(Baf)(@) := uz;of(g) (:)x”(l ) R b AT

converges uniformly to f on [0,1].

First we note that (B, f)(0) = f(0) and (B, f)(1) = f(1) for all n. Now

n

1= +a-aP =3 (7)ea-ar- = gqm)

v=0

implies

) £2) = (Buf)a) = 3. [f2)

v=0

5 f(s)]qrw(m)a
and thus

~£(2) | gnsta)

7(@) - (Baf)@) < 3 | £(2)

for all & € [0, 1].

By the (uniform) continuity of £, for every € > 0 there exists a number

l;; not 'dep;,ndmg on z, such that |f(z) — f(£)| < £ for all points z with
= =

For every z € [0,1], consider the two sets

N’ = {ue{o,l,...,n}:|x—£|< 5}

e {ye{O,l,...,n}:|z—-£ |25},
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and split the sum into two parts E". o
—=U ' S the first
sum satisfies & Zoen + 2 veni- Then

Z I f(:l,‘) - f(%) | qnu(x) = % Z an(.’t) = %i%«u(w) = g-

VEN' VEN' =0

Moreover, with M := max,¢[o,1] |f(z)| we also have

Y@ -£(Z) lam@ < 3 | 5@ - £(%) anu(w)(gc;—z%)2

VEN" VEN"
oM & N2

< — pded)

=iig2 ”E_O:‘Inv(i”)(z n) .

Since (¢ — %)? = 2 — 22% + (£)?, the last sum can be separated into the
following three parts: {

O ()era-orr =1

v=0

IN

n

O (- () o

W5 ()a-or () - ,1

T o n—1
5 DUR (k) TS SN IE
4 v=1 PR ) n

58

z? =~ (n—2
ime Y (,, b z)m” 1 —g)in ) % = 2%(1- %) +=

v=2

e L
= +n(1 )

Thus, for all z € [0, 1],

; AN z(l—-z) 1 y

and ‘
v oM 1 3

> 1@ - (%) law®) £ g < 5, |

vEN"

prc.ovided that we choose n > 3",";. Combining these facts, we obtain th
estimate

f2) - (Buf)@) < 5+5=¢

2. The Approximation Theorems of Weierstrass 129

for all z € [0,1], which establishes the uniform convergence of the sequence
(Bnf)-

Remark. We can now give an answer to the question raised in 2.1. Every
analytic function can be expanded in a power series, while every continuous
function can be represented as an expansion in terms of polynomials as

follows:
f(z) = BiH)@)+ (B2 )@ ~(Brf) @)+ +[(Baf)(@) = (Bn-1 @)+ -
This series converges uniformly, but in general cannot be rearranged into a

power series.

2.3 The Korovkin Approach. Examining the proof given in the previous
section once again, we note that the estimation of the sums (1) - (3) is the
essential part of the proof of the convergence of the sum (*). Indeed, it is

clear that the convergence essentially depends on being able to establish the .

uniform convergence of the sums (1), (2) and (3) for the functions er(z)i:=1,
es(z) := x, and e3(z) := z2. This suggests that the convergence of the
sequence of Bernstein polynomials to an arbitrary continuous function is
already determined by the way in which the Bernstein polynomials behave
for the three elements e;, ez, ez € Cla, b].

This conjecture turns out to be correct. In 1953, P. P. Korovkin estab-
lished a general approximation theorem which contains this assertion. His

proof depends in an essential way on the concept of a

Monotone Linear Operator. Let f,g € C(I) be given functions such that
f < g, where this notation means that f(z) < g(z) for all € I. Then a
linear operator L : C(I) — C(I) is called monotone provided that Lf < Lg.
This property is equivalent to the property of positivity, i. e., f > 0 implies
Lf > 0. In 2.4 we shall exploit the fact that the Bernstein operators defined
there are positive.-

Korovkin investigated sequences (Lyn),eN of positive linear operators
L, : C(I) — C(I) for I := [0,1] which map continuous functions f € C(I)
to polynomials, as well as similar operators which map a continuous and
27-periodic function f € Cax(I) with I := [—m, 7] to trigonometric poly-
Nomials of maximal degree n. He showed that for every f € C([0,1]), the
sequence (L, f) converges uniformly to f provided that uniform convergence
holds for the three functions e;(z) := 1, ez(z) := z, es(x) := z?, and that
the same holds for every f € Cax([—,7]), provided that it holds for each of
the three functions e;(z) := 1, ez(z) := sin(z), e3(z) := cos(z).

Korovkin’s proofs of these two facts are similar, but not exactly the
Same. Here we present a unified and generalized version of the proof due
to E. Schifer [1989]. This proof can, in fact, be further simplified if one is

1X:::erested only in the two special cases of continuous functions mentioned
above,
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= {f1,. C(1),
A 2 1), -oo-LetQ-——{fl,...,fk},QC (
1(;2’“5“:2;:;(18;”\;: ?:(;il(gl(e )se“t ‘(‘2 13 test kset provided that there Ee)és(tls);
e : . ;
a.nfd ztioln pe C(Ix I) such that p(t,z) = PPy a"(:)tf;-(fz) wz)l:haﬂt i,
a u;‘< « < k, p(t,) > 0 for all (t,2) € I1x 1, and p(-,_ o—the sl ¢ ool
for We d;no’te by Z(g) = {(t,x) €1 Sl \ g(t,x) —t)}for gl
i C(1 x I), and write dg(t,z) = f(z) — £( i
g ; th a given f € C(I). We now have the following
O C(I), be a sequence of positive
1 erators, and let Q be a test set with assoairted ﬁ:)nct;;]n g.i tSt;(}))III):;:
g 1 ; i Lof = fllo = 0- e ‘
tfe€ Q; limp—oo “ n : : .
ﬂfllat lt"or ever}\"zle?]—e_nf Hf — 0 for every element f € C(1) which satisfies the |
that imp—oo ||&n oo
condition Z(p) C Z(dy)-

i (o= e 0,'
P" 00’ In part (a) Of the prOOf we Show tha.t fOI‘ 1lm"_.°° “f i Lnf” ‘
.

: = 0. The proof
1 i t limy,— oo MaXtel ‘(Lndf(t, ))(t)‘
lthsrflf'ices ] :::1; Eltlhzj(t‘ ))(@)| = 0 for all elements f € C(I) such that =
that imnp—oo n )

%(p) C Z(dy) 18 presented in part (b). )
i (a) ds(t,") = f = f(t)er satisfies f — Laf = f — f(t)Lnex
From this it follows that :
1£(t) — (Laf)O| < I fllooller = Lueiloo + max |(Lnds(t, NI

function” associated w1

Theorem. Let (Ln)neNs La

b1y Lﬂdf(t7 )4

i —Lpeilloo =05
uniformly for all t € I. Sinceex € span(Q), we get limn—oo llex—Lnenll 1

= 0 gives im _.oollf—Lanoo:O.

My — o MAX Lads(t,))(®)] =0 gives iitin | .

o t(}lt:;s '111‘1111: diﬁ';:lenct: Ifltgnction depends continuously on tt}:s vzrf,(;)l;s :

here exists an open neighborio

t. Hence, for every € > 0, t . wos

;I(lj ), where |ds(t,2)| <€ for all (¢,z) € S The dlagon?IZS(:it : Bey oS

b {)’ {(t,z) e IxI \ t = x} is thus surely a subset 0O (df)- 1men

== 3 : ; {
a,zsumption that Z(p) C Z(dy), it follows that p(t,z) > 01n the comp

Q =IxI\Q

i tt
Q' is closed and hence compact, which assures tha

0 < m := ming z)eQ’ p(t, ) exists. Thus

he minimum

st < Nl P2 for (1,2) €2,

m

and we have

lldslleo t.x) + ¢ for (t,z) € Ix L
st )| < 101, 2)
Applying the positive operator Ln

% (Ladg(t, DO < ldtlee (g, ptt, )E) + eLuer)() <

< ul—ii_“_o_o_ maX(LnP(t, ))(t) + 5“Ln€1 “°°
="m €l

4
: \
R, o

with respect to z for fixed ¢, it follows
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Since p(t,t) = 0 for all ¢ € I, we can write

k

(Lap(t, (@) = Y ax(®(Lnfu)(t) = fu(D)]-

k=1

The convergence of the sequence (L,) on span(Q) thus implies that
Jim max(Lnp(t, -))(t) = 0.
Since || Lneé1||oo is uniformly bounded in n, we finally arrive at the assertion

Jim ma |(Lady(,))(0)] = 0. 0

2.4 Applications of Theorem 2.3. In this section we apply Theorem 2.3
to obtain the classical approximation theorems of Weierstrass. Although we
have already established the approximation theorem for continuous functions
in 2.2, here we reprove it by showing how it follows from Theorem 2.3.

In order to apply Theorem 2.3, we must find an appropriate test set
and a sequence of positive linear operators which converges on this test set.
We begin by establishing the Approximation Theorem 2.2 with the help of

Bernstein-Operators. The Bernstein polynomial B, f introduced in the
proof of Theorem 2.2 defines a mapping of the space of continuous functions
into the linear subspace of polynomials P,. Considering B, as an operator

B, : C(I) — C(1), it is easy to see that it is linear und monotone. First,
from the definition

@0 =3 1(2) (D)= a -2,

v=0

it follows immediately that B,(af + 89) = aB,f + Bnrg, and thus that
B,, is linear. Sin¢e f > 0 implies B, f > 0, it follows that B, is positive, or
equivalently, monotone.

A natural choice for a set of test functions Q is the set {fi, f2, f3}
with fi(z) := ei(z) = 1, fa(2) := eaz) = z, f3(®) ;= es(z) = 22, with
corresponding p defined by p(z,t) := (t —z)? = t? — 2tz + z%. The condition
Z(p) C Z(dy) holds for every f € C(I) since p(z,t) = 0 if and only if z = t.

Our choice of the elements ej,ez,e3 for the set Q is motivated by
the fact that in the proof of Theorem 2.2, we established the fact that
lim,_, o ||Baex — x|l = 0 for k = 1,2,3. This together with Theorem
2.3 implies that limp—eo ||Baf — flleo = 0 for all elements f € C(I). We

have obtained the Approximation Theorem 2.2 as an application of Theo-
rem 2.3.

Periodic Functions. A natural way to approximate a 2w-periodic func-
tion as a linear combination of given elements is to use the Fourier series




