$\Delta I A \wedge E=H$ 24/Homework 4

$$
24.0
$$

Δ 'ब λ Ejon 24
(video)
($\alpha 6 k_{n}^{\prime} \sigma \in \mathbb{S}$)

$$
\begin{gathered}
\text { MEM-255 ©. Mpookroins k ELe EqגpFores } \\
\text { XE } 2020 \\
U_{0} C
\end{gathered}
$$

A'oknon 43

$$
(1-x)^{2} T_{n}^{\prime \prime}(x)-x T_{n}^{\prime}(x)+n^{2} T_{n}(x)=0 \quad \forall n \in \mathbb{N}_{5}
$$

 onov $\mathrm{O}_{\mathrm{e}}[0,7]$ Sna.

$$
\left(1-\cos ^{2} \theta\right) T_{n}^{\prime \prime}(\cos \theta)-\cos \theta T_{n}^{\prime}(\cos \theta)+n^{2} T_{n}(\cos \theta)=0 \quad \forall \theta \in[0, n], \forall n \in \in N_{0} .
$$

 tar α ox'eबn ws Π pos θ éne7au: $\cos \theta \cdot T_{n}^{\prime}(\cos \theta)-\sin ^{2} \theta T_{n}^{\prime \prime}(\cos \theta)=n^{2} \cos (n \theta), t \theta \in[0, \pi]$.

$$
\begin{array}{ccc}
\text { Enopèvws: }+\sin ^{2} \theta T_{n}^{\prime \prime}(\cos \theta)-\cos \theta T_{n}^{\prime}(\cos \theta)+n^{2} \cos (n \theta)=0 & \forall \theta \in[0, \pi] \\
\leftrightarrow & \left(1-\cos ^{2} \theta\right) T_{n}^{\prime \prime}(\cos \theta)-\cos \theta T_{n}^{\prime}(\cos \theta)+n^{2} T_{n}(\theta)=0 & \forall \theta \in[0, \pi] .
\end{array}
$$

因

1 A6knor 4.1

núgn: ${ }^{\prime} E_{G \tau \omega:} p^{*} \in \mathbb{P}^{[-1,1]}$ n bèauaan opotopoppon npoóemon uno f onò tov $\mathbb{P}^{6}[-1,1]$.
Tbre: $\quad \min \|f \cdot q\|_{\infty}=\left\|f-p^{*}\right\|_{\infty} \Leftrightarrow 5\left\|1 / 5 f-\frac{1}{5} p^{*}\right\|_{\infty_{\infty}}=5 \min _{q \in \mathcal{F}^{f}=11 / 5}\left\|1 / f-\frac{1}{5} q\right\|_{\infty}$

$$
\begin{aligned}
& q \in f_{p}[-1,1] \\
& \Leftrightarrow \max _{x \in[-1,1]}|x^{7}-\underbrace{\frac{1}{5}\left[-6 x^{6}-3 x^{4}-2 x+1-p^{7}(x)\right]}_{\in \mathbb{T}^{6}[-1,1]}|=\min _{\left.z \in \mathbb{P}^{6}[-1,1]\right]} \max _{x \in-1,1]}\left|x^{7}-z(x)\right| \\
& =\min _{\hat{z} \in \hat{P} 7_{[-1,1]}}\|\hat{z}\|_{\infty}=\left\|\hat{T}_{7}\right\|_{\infty}
\end{aligned}
$$

${ }^{1} A_{p \alpha:}: 1 / 5 f-\frac{1}{5} p^{*}=\hat{T}_{7} \Leftrightarrow f \cdot p^{*}=5 \hat{T}_{7} \Leftrightarrow p^{*}=f-5 \cdot 2^{-6} T_{7}$

$$
\Leftrightarrow \quad p^{*}=f-\frac{5}{26} T_{+} .
$$

'A6knon 4.6
Eown $n \in \mathbb{N} N_{0}$ kae $\tilde{B}_{l}^{n}(t):=\binom{n}{l} t^{l}(1-t)^{n-l} \quad \forall t \in[0,1], l=0, \cdots, n, n b i<n \quad \Pi$ bituwipur Bernstein boùraún.
a). $\Delta .0$. ol $\left(B_{R}^{n}\right)_{R=0}^{n+1}$ fivar reappikìs ave\}aeanzes guraponsels zol

$$
\left(\mathbb{R}, c\left(\left(C_{0}, 1\right) ; \mathbb{R}\right),+, \cdot\right) .
$$

M
 reapuiko dvē deenco ow $(0,1)$.

' $E_{6 z w}\left(\lambda_{j}\right)_{j=0}^{n+1} \subset \mathbb{R} \tau \cdot \omega . \sum_{j=0}^{n+1} \lambda_{j} t^{j}(1-t)^{n+1-j}=0 \quad \forall t \in(0,2) \quad 24.4$

$$
\Rightarrow \lambda_{n+1} t^{n+1}+(1-t) \sum_{j=0}^{n} \lambda_{j} t^{j}(1-t)^{n-j}=0 \quad \forall t \in(0,1) \text {. }
$$

b) $\left.\Delta_{E 1}^{\prime}\right\}_{\tau \in}{ }_{o z l}: \int_{0}^{1} B_{e}^{n}(t) d t=\frac{1}{n+1}, l=0, \ldots, n$.
nugn:

$$
\text { l=0: } B_{0}^{n}(t)=\binom{n}{0} t^{0}(1-t)^{n-t}=(1-t)^{n} . \quad E_{\tau 61}: \int_{0}^{1} B_{0}^{n}(t) d t=\int_{0}^{1}(1-t)^{n} d s=-\left.\frac{(1-t)^{n+1}}{n+1}\right|_{t=0} ^{t=1}=\frac{1}{n+1} \text {. }
$$

$$
\begin{array}{rl}
{ }^{E_{G I w}} & l e\{0, \cdots, n-1\}-T_{0}^{1}+t: \int_{0}^{1} B_{l+1}^{n}(t) d t=\binom{n}{l+1} \int_{0}^{1} t^{l+1}(1-t)^{n-l-1} d t \\
& =\frac{n!}{(l+f)!(n-l-1)!}\left[-\left.\frac{t^{l-1}(1-t)^{n-l}}{\frac{n-l}{t=1}}\right|_{t=0} ^{t=1}+\int_{0}^{1} t^{l}(l+1) \frac{(1-t)^{n-l}}{n-l} d t\right] \\
& =\frac{n!}{l!(n-l)!} \int^{1} t^{l}(1-t)^{n-l} d t=\binom{n}{l} \int_{0}^{l} t^{l}(1-l)^{n-l} d t=\int_{0}^{1} B_{l}^{n}(t) d t .
\end{array}
$$

Euvopiljovias expurue: $\int_{0}^{1} B_{e}^{n}(t) d t=\int_{0}^{1} B_{l+1}^{n}(t) d t \quad n \alpha l=0, \ldots, n-1 . E n \in \int_{i}^{1} \int_{0}^{1} B_{0}^{n}(t) d=\frac{1}{n+1}$ ine7al ou: $\int_{0}^{1} B_{R}^{n} f(t) d t=\frac{1}{n+1} \quad n \propto l=0, \ldots, n$.
万) $A_{e}^{\prime} i_{z \in} b_{c} \quad B_{l}^{n-1}(t)=\frac{n-l}{\eta} B_{l}^{\prime}(t)+\frac{l+1}{n} B_{e+1}^{n}(t) \quad \forall t \in[0,1], l=0, \ldots, n-1, n \geqslant 1$.

$$
\frac{n-l}{n}\binom{n}{l} t^{l}(1-t)^{n-l}+\frac{l+1}{n}\left(\begin{array}{l}
n \\
l=1
\end{array} t^{l+1}(1-t)^{n-l-1}=\frac{n!}{e!(n-e)!} t^{l}(1-l)^{n-l} \frac{n-l}{n}+\frac{l-1}{n} \frac{n!}{(l n)!(n-1)} t^{l-1}(1-t)^{n-l-1}\right.
$$

$\Delta I A \wedge E=H$ 24/Homework 4

$$
\begin{aligned}
& =\frac{(n-1)!}{l!(n-l-1)!} t^{l}(1-t)^{n-l}+\frac{(n-1)!}{l!(n-l-1)!} t^{l+1}(1-t)^{n-l-1} \\
& =\binom{n-1}{l}\left[t^{l}(1-t)^{n-l}+t^{l+1}(1-t)^{n-l-1}\right] \\
& =\binom{n-1}{l} t^{l}(1-t)^{n-l-1}[\underbrace{(1-t)+t]}_{=1}]=\binom{n-1}{e} t^{l}(1-t)^{n-l-1}=B_{l}^{n-1}(t) .
\end{aligned}
$$

$$
24.6
$$

反) $\left.\operatorname{Se}^{\prime}\right\}_{T \in}$ bet: $\left(B_{l}^{n}\right)^{\prime}(t)=n\left[B_{l: 1}^{n-1}(t)-B_{l}^{n-1}(t)\right], l=1, \ldots, n$.
Mivan. 'Earw: $n \in \mathbb{N}$ kar $l \in\{1, \ldots, n\}$. Torze Exxoupe: $B_{l}^{n}(t)=\binom{n}{l} t^{l}(1-t)^{n-l}$

$$
\text { kou } \begin{aligned}
\left(B_{e}^{n}\right)^{\prime}(t) & =\binom{n}{l}\left[l t^{l-1}(1-t)^{n-l}+(n-l) t^{l}(1-t)^{n-l-1}\right] \\
& =n\left[\frac{(n-1)!}{l!(n-l)!} t^{l-1}(1-t)^{n-l}+\frac{(n-1)!}{l!(n-l)!}(n-l) t^{l}(1-t)^{n-l-1}\right] \\
& =n\left[\frac{(n-1)!}{(l-1)!(n-l)!} t^{l-1}(1-t)^{n-l}+\frac{(n-1)!}{(n-l-1)!l!} t^{l}(1-t)^{n-l-1}\right]
\end{aligned}
$$

$\Delta I A \wedge E=H$ 24/Homework 4

$$
\begin{aligned}
& =n\left[\binom{n-1}{l-1} t^{p-1}(1-t)^{(n-1)-(l \cdot 1)}-\binom{n-1}{e} t^{l}(1-t)^{n-1-l}\right] \\
& =n\left[B_{l-1}^{n-1}(t)-B_{l}^{n-1}(t)\right] .
\end{aligned}
$$

1A6knon 4.7. V6tw $f \in C([0,1] ; \mathbb{R})$ kon Bnf to no дuẅvupo Bernstein To onoío aruocolxel gens f.

Nion: 'EGzw bac $n=0$. Tóre $B_{0} f(t)=f(0) \forall t \in[0,1]$, enopévwsn $B_{0} f$ eivde povitovn eneron Eivol orweph. 'Ertw: $n \geq 1$. Tore 'xoure:

$$
\begin{aligned}
B_{n} f(t) & =\sum_{e=0}^{n} B_{e}^{n}(t) f\left(\xi_{n}\right)=B_{0}^{n}(t) f(0)+\sum_{l=1}^{n-1} B_{x}^{n}(t) f(\%)+B_{n}^{n}(t) f(t) \\
& \left.=(1-t)^{n} f(0)+\sum_{l=1}^{n-1} B_{e}^{n}(t) f(e)\right)+t^{n} f(1) .
\end{aligned}
$$

$\Pi_{\alpha \times \text { apuri }}$ Joras ws neost maípuoure:

$$
\begin{aligned}
& \text { ' } E_{\tau 61}: \quad\left(B_{n} f\right)^{\prime}(t)=-n(1-t)^{n-1} f(0)+\sum_{\ell=1}^{n-1} f\left(\frac{l}{n}\right)\left(B_{l}^{n}\right)^{\prime}(t)+n t^{n-1} f(1) \\
& 24.8 \\
& =-n(1-t)^{n-1} f(0)+n \sum_{l=1}^{n-1} f\left(\frac{l}{n}\right)\left[B_{l-1}^{n-1}(t)-B_{l}^{n-1}(t)\right]+n t^{n-1} f(t) \\
& =-n(1-t)^{n-1} f(0)+n \sum_{l=1}^{n-1} f\left(\frac{l}{n}\right) B_{B_{1}, 1}^{n-1}(t)-n \sum_{l=1}^{n-1} f\left(\frac{1}{n}\right) B_{l}^{n-1}(t)+n t^{n-1} f(L) \\
& =-n B_{0}^{n-1}(t) f(0)+n \sum_{l=0}^{n-2} f\left(\frac{e l}{n}\right) B_{l}^{n-1}(t)-n \sum_{l=1}^{n-1} f\left(\mu_{n}\right) B_{l}^{n-1}(t)+n B_{n-1}^{n-1}(t) f(1) \\
& =n \sum_{l=0}^{n-1} f\left(\frac{e n}{n}\right) B_{l}^{n-1}(t)-n \sum_{l=0}^{n-1} f\left(e_{n}\right) B_{l}^{n-1}(t)+n B_{n-1}^{n-1}(t) f(L)-n B_{l-1}^{n-1}(t) f\left(\frac{n+t-1}{n}\right) \\
& =n \sum_{l=0}^{n-1} \underbrace{B_{l}^{n-1}(t)}_{\geqslant 0}[\underbrace{f\left(\frac{l+1}{n}\right)-f\left(e_{n}\right)}_{z_{l}}] \quad \forall t \in[0,1] .
\end{aligned}
$$

 enopívws ($B_{n} f f^{\prime}(t) \leq 0 \quad v t e[0,1]$, nou axpaivel ón n Bnf eival दpimed.
b) $B_{\text {péite tis ripés }} B_{n} f(0), B_{n} f(1),\left(B_{n f}\right)^{\prime}(0),\left(B_{n} f\right)^{\prime}(1)$.

$$
\begin{aligned}
& B_{n} f(l)=\sum_{l=0}^{n} B_{l}^{n}(1) f(l=n)=\left.\sum_{l=0}^{n-1}\binom{n}{l} t^{l} \underbrace{(1-1)^{n-e}}_{=0}\right|_{t=1} ^{f(l l e})+\left.\binom{n}{n} \underbrace{n}_{=1}\right|_{t=1} ^{n} f(1)=f(1)
\end{aligned}
$$

$$
\begin{aligned}
& \left(B_{n} f\right)^{\prime}(0)=n \sum_{e=0}^{n-1} \underbrace{B_{l}^{n-1}(0)}_{=0}\left[f\left(\frac{l-1}{n}\right)-f\left(\frac{e}{n}\right)\right]=n B_{0}^{n-1}(0)\left(f\left(\frac{1}{n}\right)-f(0)\right) \\
& =\left.n(?)(1+t)^{n-1}\right|_{t=0}(f(1 / 2)-f(x))
\end{aligned}
$$

$$
\begin{aligned}
& =n B_{n=1}^{n-1}(l)\left(f\left(\frac{n-14}{n}\right) f\left(\frac{n-1}{n}\right)\right)=n\left(f(l)-f\left(\frac{n-1}{n}\right)\right) .
\end{aligned}
$$

'Otav $n=1$ torze: $(B_{n} f^{\prime}(t)=\left(B_{1} f\right)^{\prime}(t)=\underbrace{B_{0}^{0}(t)}_{=1} \cdot\left[f\left(\frac{1}{2}\right)-f\left(\frac{0}{1}\right)\right]=f(1)-f(0)$
na k oेve $t \in[0,1]$.
'DTav $n=0$ titr: $B_{0} f(t)=f(0) \quad \forall t \in[0,1]$, enquinurs: $\left(B_{0}\right)^{\prime}(t)=0 \quad \forall t \in[0, L]$.
$1 A_{\text {Gknon }} 4.9$

 $\Delta=\left(\delta_{e}\right)_{l=0}^{n+1}$ ónov: $\delta_{0}=\gamma_{0}, \delta_{n+1}=\gamma_{n}, \delta_{l}=\left(1-\frac{l}{n+1}\right) \gamma_{l}+\frac{l}{n+1} \gamma_{l-1}, l=1, \ldots, n$. $\left.\Delta e^{\prime}\right\}$ ze íu: $B_{T}(t)=B_{\Delta}(t) \quad \gamma \alpha$ k $\alpha \hat{c} t \in[0,1]$.

Múcn

Tia rowte $t \in[0,1]$, èxoufe:

$$
\begin{aligned}
& B_{\rho}(t)=\sum_{l=0}^{n+1} B_{l}^{n+1}(t) \delta_{l}=B_{0}^{n+1}(t) \delta_{0}+\sum_{P=1}^{n} B_{l}^{n+1}(t) \delta_{l}+B_{n+1}^{n+1}(t) \delta_{n+1} \\
& =B_{0}^{n+1}(t) \gamma_{0}+\sum_{l=1}^{n} B_{l}^{n+1}\left(t+\left[\left(1-\frac{l}{n+1}\right) \gamma_{l}+\frac{l}{n+1} \gamma_{l=1}\right]+B_{n+1}^{n+1}(t) \gamma_{n}\right. \\
& =B_{0}^{n+1}(t) \gamma_{0}+\sum_{l=1}^{n} B_{l}^{n+(t)}\left(1-\frac{l}{n+1}\right) \gamma_{l}+\sum_{l=0}^{n-1} B_{l+f}^{n+1}(t) \frac{l+1}{n+1} \gamma_{l}+B_{n+1}^{n+1}(t) \gamma_{n} \\
& =B_{0}^{n+1}(t) \gamma_{0}+\sum_{l=1}^{n} B_{l}^{n+(t)} \gamma_{e}-\sum_{l=1}^{n} B_{0}^{n(t)}\left(\frac{l}{n+1} \gamma_{l}+\sum_{l=0}^{n} B_{e=1}^{n+1}(t) \frac{e+1}{n+1} \gamma_{e}\right. \\
& =\sum_{l=0}^{n} B_{l}^{n+(t)} \gamma_{l}-\sum_{l=0}^{n} B_{l}^{n+(t)} \frac{l}{n+1} \gamma_{l}+\sum_{l=0}^{n} B_{l=1}^{n+1}(t) \frac{l-1}{n+1} \gamma_{l}=
\end{aligned}
$$

$$
=\sum_{l=0}^{n}[\underbrace{\left.B_{l}^{n-1}(t)-B_{l}^{n+1}(t) \frac{l}{n+1}+B_{l+1}^{n+1} \frac{e H}{n+1}\right] \gamma_{l} . . . ~ . ~ . ~}_{V_{l}^{\prime \prime \prime}}
$$

Maparnpoú $\mu \in \frac{1}{\sigma}$:

$$
\begin{aligned}
M_{l}= & \binom{n+1}{l} t^{l}(1-t)^{n+1-l}-\binom{n+1}{l} t^{l}(1-t)^{n+1-l} \frac{l}{n+1}+\binom{n+1}{l+1} \frac{l+1}{n+1} t^{l+1}(1-t)^{n+1-l-1} \\
= & t^{l}(1-t)^{n-l}\left[\frac{(n+1)!}{l^{\prime} \cdot(n+1-l)!}(1-t)-\frac{n!l}{l!(n+1-l)!}(1-t)+\frac{n!}{l!(n-l)!} t\right] \\
= & \frac{t^{l}(1-t)^{n-l}}{l!(n+1-l)!} \cdot n![(n+1)(1-t)-l(1-t)+(n-l+1)!t] \\
= & \frac{n!t^{l}(1-l)^{n-l}}{l!(n+l-l)!} \cdot(n+1-l)(1-t+t)=\binom{n}{l} t^{l}(1-t)^{n-l} \quad, l=0, \ldots, n . \\
& 1 E_{[61:}: B_{\Delta}(t)=\sum_{l=0}^{n}\binom{n}{l} t^{l}(1-t)^{n-l} \gamma_{l}=B_{l}(t) \quad \forall t \in[0,1] .
\end{aligned}
$$

1 Ackion 4.10

$\Delta_{e}^{\prime} Z_{T \in E} d \tau \mathrm{l}: \quad B_{-}^{\prime}(t)=n \sum_{l=0}^{n-1}\left(Y_{t l_{1}}-\gamma_{l}\right) B_{l}^{n-1}(t) \quad \forall t \in[0,1]$.
Eninatov, boav $n \geqslant 2$, Seitre bu:

$$
B_{r}^{\prime \prime}(t)=n(n-1) \sum_{l=0}^{n-2}\left(\gamma_{l+2-2} \gamma_{l+1}+\gamma_{l}\right) B_{l}^{n-2}(t) \quad \forall t \in[0,1] .
$$

Nugn:
A. $\prod_{p o \phi \alpha v \omega s} B_{r}^{\prime}(t)=\sum_{l=0}^{n}\left(B_{l}^{n}\right)^{\prime}(t) \gamma_{l}$. Doùdeloque inns oro (a) ans'Agkhons $\Delta 7$ kou kerdahraqe oun oxken: $B_{r}^{\prime}(t)=n \sum_{l=0}^{n-1} B_{l=0}^{n-1}(t)\left(\gamma_{l+1}-\gamma_{l}\right)$. (Int). To γ_{l} vuroxel $\left.\sigma_{0} f(1 / n)\right)$.

exoupe: $\quad B_{T}^{\prime \prime}(t)=n \sum_{l=0}^{n-1}\left(B_{l}^{n-1}\right)^{\prime}(t)\left(\gamma_{l+1}-\gamma_{l}\right)$

$$
\begin{aligned}
& =n\left(B_{0}^{n-1}\right)^{\prime}(t)\left(\gamma_{1}-\gamma_{0}\right)+n \sum_{l=1}^{n-t}\left(B_{l}^{n-1}\right)^{\prime}(t)\left(\gamma_{l+1}-\gamma_{l}\right)+n\left(B_{n-1}^{n-1}\right)^{\prime}(t)\left(\gamma_{n-\gamma}-\gamma_{n-1}\right) \\
& =n\left(\left.B_{0}^{n-1}\right|^{\prime}(t)\left(\gamma_{1}-Y_{0}\right)+n(n-1) \sum_{e=1}^{n-2}\left(Y_{e+1}-Y_{e}\right)\left[B_{e}^{n-2}(-1)-B_{e}^{n-t}(t)\right]+n\left(B_{n-1}^{n-1}\right)^{\prime} f()\left(Y_{n}-Y_{n-1}\right)\right. \\
& =-n(n-1)(1-t)^{n-2}\left(\gamma_{1}-\gamma_{0}\right)+n(n-1) t^{n-2}\left(\gamma_{n}-\gamma_{n-1}\right) \\
& +n(n-1) \sum_{l=1}^{n-2}\left(\gamma_{l+1}-r_{l}\right) B_{l-1}^{n-2}(t)-n(n-1) \sum_{l=1}^{n-2}\left(\gamma_{l+1}-\gamma_{l}\right) B_{l}^{n-2}(t) \\
& =-n(n-1)(1-t)^{n-2}\left(\gamma_{1}-\gamma_{0}\right)+n(n-1) t^{n-2}\left(\gamma_{n-}-\gamma_{n-1}\right)+n(n-1)_{l=0}^{n-3}\left(\gamma_{l+1}-\gamma_{l+1}\right) B_{l}^{n-2}(t) \\
& -n(n-1) \sum_{l=1}^{n-2}\left(x_{e}-1-\gamma_{l}\right) B_{e}^{n-9}(t) \\
& =-n(n-1) \sum_{n-2}^{m=2}(t)\left(\gamma_{1}-\gamma_{0} \mid+n(n-1) B_{n-2}^{n-2}(t)\left(\gamma_{n}-\gamma_{n-1}\right)+n(n-1) \sum_{p=0}^{n-3}\left(\gamma_{l+2}-\gamma_{e-1}\right) B_{n-2}^{n-2}(t)\right. \\
& -n(n-1) \sum_{l=1}^{n-2}\left(\gamma_{l+1}-Y_{l}\right) B_{l}^{n-1}(t)=n(n-1) \sum_{l=0}^{n-2}\left(Y_{l q-q}-Y_{l+1}\right) B_{l}^{1-2}(t)-n(n-1) \sum_{l=0}^{n-2}\left(\gamma_{e l 1}-\gamma_{l}\right) B_{l}^{n-2}(t)
\end{aligned}
$$

$$
=n(n-1) \sum_{e=0}^{n-2}\left(\gamma_{l+9}-2 \gamma_{e l 1}+\gamma_{l}\right) B_{e}^{n-2}(t) \quad n \alpha \dot{k}^{\alpha} \omega \in \theta \quad t \in[0,1] \text {. }
$$

 Efupind $=06 \varphi^{\prime} d \lambda_{p} \alpha \quad E=\max _{t \in[0,1]} \mid f(t)-B_{n f(t) \mid \text {. }}$

Mugn. Tpúta Π аракеn poúpe óz:

$$
\begin{aligned}
B_{0} f(t) & =f(0)=0, B_{1} f(t)=B_{0}^{2}(t) \underbrace{f(0)}_{=0}+B_{1}^{1}(t) f(1)=t f(1)=t \\
B_{2} f(t) & =B_{0}^{2}(t) \underbrace{f(0)}_{=0}+B_{1}^{2}(t) f\left(\frac{1}{2}\right)+B_{2}^{2}(t) f(1) \\
& =\binom{2}{2} t(1-t) \frac{1}{0}+t^{2}=\frac{t(1-t)}{4}+t^{2}=\frac{3}{4} t^{2}+\frac{t}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { "E } 6 \tau w: n \geqslant 3 \text {. Torc. } \\
& B_{n} f(t)=\sum_{l=0}^{n} \vec{B}_{l}^{n}(t)\left|\frac{l}{n}\right|^{3}=\frac{1}{n^{3}} \sum_{l=1}^{n} \frac{n!}{l^{!} \cdot(n-l)!} t^{\ell}(1-l)^{n-l} e^{3} \\
& =\frac{1}{n^{2}} \sum_{l=1}^{n} \frac{(n-1)!}{(l-1)!(n-l)!} t^{\ell}(1-t)^{n-l} e^{2} \\
& =\frac{1}{n^{2}} \sum_{e=0}^{n-1} \frac{(n-1)!}{e^{!}(n-l-1)!} t^{l+1}(1-t)^{n-1-l}(l+1)^{2} \\
& =\frac{t}{n^{2}} \sum_{l=0}^{n-1}\binom{n-1}{l} t^{l}(1-t)^{n+l e}\left(1+2 l+l^{2}\right) \\
& =\frac{t}{n^{2}}\left[\sum_{l=0}^{n-1} B_{l=1}^{n-1}(t)+\sum_{l=0}^{n-1} B_{l}^{n-1}(t) l+\sum_{l=0}^{n-1} B_{l}^{H-1}(t) l^{2}\right] \text {. } \\
& =\frac{t}{n^{2}}+\frac{2 t}{n^{2}} \sum_{l=0}^{n^{n-1}} B_{l}^{n-1}(t) l+\frac{t}{n^{2}} \sum_{l=0}^{n-1} B_{l}^{n-1}(t) l^{2}, \forall t \in[0,1] \text {. }
\end{aligned}
$$

' Xxoupe $^{\prime} n_{n} \delta_{n}$ (ba. $\Delta{ }^{\prime} \alpha \lambda \mathcal{C l}_{n}$ 18) '́vL:

$$
\begin{aligned}
& \sum_{l=0}^{m} B_{l}^{m}(t) l^{2}=m \cdot t+t^{2} m(m-1) \\
& \sum_{l=0}^{m} B_{l}^{m}(t) l=m \cdot t
\end{aligned}
$$

nakकी $t \in[0,1]$ kou $m \geq 2$. 'ET61:

$$
\begin{aligned}
B_{n} f(t) & =\frac{t}{n^{2}}+\frac{2 t}{n^{2}}(n-1) t+\frac{t}{n^{2}}\left[(n-1) t+t^{2}(n-1)(n-1)\right] \\
& =\frac{t}{n^{2}}+2 t^{2} \frac{n-1}{n^{2}}+\frac{n-1}{n^{2}} t^{2}+t^{3} \frac{(n-1)(n-2)}{n^{2}} \\
& =\frac{t}{n^{2}}+3 t^{2} \frac{n-1}{n^{2}}+t^{3} \frac{(n-1)(n-2)}{n^{2}} \in \mathbb{P}^{3}[0,1] .
\end{aligned}
$$

$E_{t 6:}$

$$
\begin{aligned}
\left|E^{n}(t)\right| & =\left|\frac{t}{n^{2}}+3 t^{2} \frac{n-1}{n^{2}}+t^{3}\left[1-\frac{(n-1)(n-2)}{n^{2}}\right]\right| \\
& =\left|\frac{t}{n^{2}}+\frac{3(n-1)}{n^{2}} t^{2}+t^{3} \frac{n^{2}-\left(n^{2}-3 n+2\right)}{n^{2}}\right| \\
& =\left|\frac{t}{n^{2}}+\frac{3(n-1)}{n^{2}} t^{2}+t^{3} \quad \frac{3 n-2}{n^{2}}\right| \\
& <\frac{1}{n^{2}}+\frac{3}{n}+\frac{2}{n} \leq \frac{5}{n}+\frac{1}{n^{2}} \quad \forall t \in[0,1] . \\
A_{\text {ec }}: & \left\|E^{n}\right\|_{00} \leq \frac{5}{n}+\frac{1}{n^{2}} \quad \forall n \in \mathbb{N} .
\end{aligned}
$$

 kal $\mathrm{Bnft}_{\text {to nodiwiupo Bernstein to onbio dvencrolyei unv } f .}$
Q). $\Delta \cdot 0 \cdot n f \delta_{\in v}$ tival Lipschitz voo $[0,1]$.

MÚGn: If eivar Lipschitz on $[0,1]$ avv to sivvo λ_{0}

$$
B:=\left\{\frac{|f(x)-f(y)|}{|x-y|}: x, y \in[0,1], x \neq y\right\}
$$

Eirau àm ¢pagnévo. ©a kiaroupe anagugn de 2 wono.
 Bivà:: $A=\left\{\frac{|f(x)-f(x)|}{|x|}: x \in[0,1], x \neq 0\right\}$. Eneion $A \subset B$, énecouóu

$$
\Rightarrow \sqrt{x} \leq L x \quad \forall x \in(0,1] \Rightarrow 1 \leq L \sqrt{x} \quad \forall x \in[0,1] \Rightarrow 1 \leq L \lim _{x \rightarrow 10^{+}} \sqrt{x} \Rightarrow 1 \leq 0 .
$$

Atono.
b) A.O. undexet c>o t.w. $\left\|f-B_{n} f\right\|_{\infty} \leq \mathrm{C} n^{-1 / 2} \quad \forall n \geq 1$.
24.20

חÚGn $\prod_{\text {人радпроо́к } \in \text { óru: }} f(t)-B_{n} f(t)=\sum_{l=0}^{n} B_{l}^{\eta}(t)\left(f(t)-f\left(\frac{e}{n}\right)\right), \forall t \in[0,1], \forall n \in \mathbb{N}$. $\prod_{\alpha \alpha \alpha D e} t \in[0,1]$ kou $n \in \mathbb{N}$, en $n \in 7 \alpha r:$

$$
\begin{array}{rl}
\left|f(t)-B_{n} f(t)\right| & \leqslant \sum_{l=0}^{n} B_{e}^{n}(t)\left|\sqrt{t}-\sqrt{e^{l} / n}\right|
\end{array} \sum_{l=0}^{n} \underbrace{n}_{\geqslant 0}(t) \frac{|t-l / n|}{|\sqrt{t}+\sqrt{l / n}|})
$$

$$
{ }^{\prime} E_{\tau b 1}:\left|f(t)-B_{n} f(t)\right| \leqslant \frac{1}{\sqrt{t}} \frac{\sqrt{t} \sqrt{1-t}}{\sqrt{n}}=\frac{\sqrt{1-t}}{\sqrt{n}} \leq \frac{1}{\sqrt{n}} \quad f t \in(0,1], \forall n \geq 2
$$

Encion: $f(0)-B_{n} f(0)=0$, íncras ire: $\left\|f-B_{n} f\right\|_{\infty} \leq 1 / \sqrt{n} \quad \begin{array}{ll}\forall n \geq 1 \\ \forall n \geqslant 2\end{array}$
(A6knon 4.5. E6tw $f \in C([0,1] ; \mathbb{R})$ n onoi α eival Holdur $\sigma u v \in x n ' s p \in \in \mathcal{\theta} \dot{\theta} \in \mathrm{en} \alpha \in(0,1)$,
 Bernstein to anmo avuonoxtil sunv f, séircebu undextei c>o r.w.

$$
\left\|f-B_{n} f\right\|_{\infty} \leq c n^{-1 / 2} \quad \forall n \in \mathbb{N} \text {. }
$$

Múgn: (Eow neiN kou $t \in[0,1]$. Tite:

$$
\begin{aligned}
& \text { 1. }(E \text { ow } n \in \mathbb{N} \text { kou } t \in[0,1] \text {. Tort: } \\
& \left|f(t)-B_{n} f(t)\right| \leq \sum_{l=0}^{n} B_{l}^{\prime}(t)|f(t)-f(l / n)| \leq L \sum_{p=0}^{n} \hat{B}_{l}^{n}(t)|t-1 / n|^{\alpha}
\end{aligned}
$$

$\Delta I A \wedge E=H$ 24/Homework 4

$$
\begin{aligned}
& =L \sum_{l=0}^{n}\left(B_{l}(t)\right)^{\frac{1}{p}+\frac{1}{q}}\left|t-\ln _{n}\right|^{\alpha} \\
& \frac{1}{P}+\frac{1}{q}-1 \quad p, q>1 \\
& \leq L\left\{\sum_{l=0}^{n}\left[\left(B_{l}^{n}(t)\right)^{1 / r}\right]^{p}\right\}^{p / \frac{1}{p}}\left\{\left.\sum_{l=0}^{n}\left[\left(B_{l}^{n}(t)\right)^{\frac{1}{7}}\right]^{q} \right\rvert\, t-e_{n} T^{\alpha q}\right]^{1 / q} \\
& \leq L[\underbrace{\left[\sum_{t=0}^{n} B_{k}^{\eta}(t)\right.}_{=1}]^{\frac{1}{\rho}}\left[\sum_{k=0}^{n} B_{R}(t)\left|t-\ell_{m}\right|^{\alpha q}\right]^{1 / 7} .
\end{aligned}
$$

Amдѐroupe: $q=\frac{9}{2}>1$ kan éxopre:

$$
\begin{aligned}
& \mid f\left(t-B_{n} f(t) \mid \leq L\left[\sum_{\ell=0}^{n} B_{\ell}^{n}(t)\left(t-L_{n}\right)^{2}\right]^{\alpha / 2}\right. \\
& \leq L\left(\frac{t(1-t)}{n}\right)^{\alpha / 2} \leq \frac{L}{2^{\alpha}} \frac{1}{n^{\alpha / 2}} \quad \forall n \geqslant 2 \quad \forall t \in[0,1],
\end{aligned}
$$

ETb: $\left\|f-B_{n} f\right\|_{\infty} \leq \frac{L}{2^{<}} n^{-2 / 2} \quad \forall n \geq 2$.

$$
\left.\leq L \|-\left.L\right|^{2}+L t^{2} \leq 2 L \cdot\right]
$$

1 A6knon 4.2.
, Escw $f:[0,1] \rightarrow \mathbb{R} p \in: f(t)=3 t^{3}+2 t-1 \quad \forall t \in[0,1]$. Bpeite on
bìzelagn opolopropun npootyon tus fanio cov $\mathbb{P}^{2}[0,1]$.
Nuen: Avajntoípe $p^{+} \in \mathbb{P}^{2}[0,1]$ z.w.

$$
\begin{aligned}
& \max _{t \in[0,1]}\left|f(t)-p^{t}(t)\right|=\min _{q \in \mathbb{P}^{2}[0,1]} \max _{t \in[0,1]}|f(t)-q(t)| \\
\Leftrightarrow & \max _{s \in[-1,1]}\left|f\left(\frac{H s}{2}\right)-\stackrel{t}{p}\left(\frac{1+s}{2}\right)\right|=\min _{q \in \mathbb{P}^{2}[0,1]} \max _{S \in[1,1]}\left|f\left(\frac{s+1}{2}\right)-q\left(\frac{1+s}{2}\right)\right|
\end{aligned}
$$

Qo'jorras $g:[-1,1] \rightarrow \mathbb{R} \mu \in: g(s)=f\left(\frac{1+5}{2}\right)$ na k abs $s \in[-1,1]$
kon $Z^{\prime \prime} \in \mathbb{P}^{2}[-1,1] \quad \mu \in Z^{*}(s)=P^{\frac{1}{*}}\left(\frac{s+1}{2}\right) \gamma \alpha k \theta_{E} S \in[-1,1]$, छ you μ :

$\Delta I A \wedge E=H$ 24/Homework 4

$$
\begin{aligned}
& \frac{3}{8}\left[\begin{array}{ll}
\max , 1] \\
{[0 / 3} \\
\hline
\end{array}\right. \\
& =\frac{3}{8} \min _{z \in \mathbb{P}^{2}[-1,1]} \max _{[-1,1]}\left|\frac{8}{3} f-\frac{8}{3} z\right|=\frac{3}{8} \min _{z \in \mathbb{P}^{2}[-1,1]} \max _{t \in[-1,1]}\left|t^{3}-z(t)\right| \\
& =\frac{3}{8} \cdot \min _{\left.\hat{z} \in \hat{\mathbb{P}}^{3}[-1,1]\right]}\|\hat{z}\|_{\infty}=\frac{3}{8} \cdot\left\|\hat{T}_{3}\right\|_{60} \\
& E_{T G 1}: \frac{8}{3}\left(g-z^{*}\right)=\hat{T}_{3} \Leftrightarrow \frac{8}{3}\left(g-z^{*}\right)=\frac{1}{4} T_{3} \Leftrightarrow g-z^{*}=\frac{3}{32} T_{3} \\
& \Leftrightarrow \quad z^{*}=g \cdot \frac{3}{32} T_{3} \cdot H \quad z^{*}(s)=g(s)-\frac{3}{32} T_{3}(s) \quad \forall s \in[-1,1] \\
& \Leftrightarrow z^{*}(2 t-1)=g(2 t-1)-\frac{3}{32} T_{3}(2 t-1) \quad \forall t \in[0,1] \\
& \Leftrightarrow p^{*}(t)=f(t)-\frac{3}{32} T_{3}(2 t-1) \forall t \in[0,1]
\end{aligned}
$$

